


2

EDITORIAL
THIAGO COCCO ROQUE | EDITOR-IN-CHIEF

The beauty of the ILLC, and what makes it such a 

special place, is the diversity of thought. Students and 

professors from so many different backgrounds and 

intellectual interests, sharing ideas and passions, all 

drawn by a single common interest: logic, whatever 

that means. To celebrate this kaleidoscope of 

perspectives, we the students of the Master of Logic, 

decided it was about time for us to have the means to 

share with the MoL community what we are the most 

enthusiastic about. 

Thus, the Illogician was born. This is the first edition 

(with hopefully many more to come) of a safe space for 

students to write essays, jokes, opinions, satires, and 

whatever else makes their eyes glow within the 

strange and wonderful universe of Logic.

The reader should expect a true mosaic of articles: 

from an investigation in elementary topos theory, to a 

comparison between logic and pizza toppings, we have 

it all! The final result turn out to be a wholesome 

reflection of what the MoL is all about: a bunch of 

people who love talking about Logic, even if no one 

agrees on what Logic is in the first place. 

I hope the reader has as much fun turning the pages 

as we had creating them! 
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MATHEMATICIANS, LIST YOUR 
INGREDIENTS!
JOSJE VAN DER LAAN | MATHEMATICS, PHILOSOPHY
A wise friend of mine once compared being a 

constructivist to being a vegetarian: even if you 

are convinced it is the right choice, it is hard to 

fully commit to it in practice. As a vegetarian 

and a (developing) constructivist myself, I have 

come to appreciate just how fitting that 

comparison is. Both philosophies involve 

conscious decisions not to use certain things, 

coming from a deeper commitment to a way of 

thinking. Just as vegetarians avoid meat, 

constructivists avoid non-constructive principles 

like the Law of the Excluded Middle or the Axiom 

of Choice.1 Over the years, it has become easier 

and easier to follow a vegetarian diet and eating 

meat is (in certain circles) no longer the norm. 

Perhaps this analogy can be used to our 

advantage: what we can learn from this 

development? How could we make it easier to 

be a constructivist in a world where one often 

assumes everyone eats “meat” by default?

One small but transformative change that made 

the life of a vegetarian easier was the rise of 

labeling. Suddenly, you no longer had to 

interrogate the waiter or read through 

ingredient lists with a magnifying glass — a 

small green “V” quietly told you what was safe to 

eat. The system did not require anyone to stop 

eating meat; it simply acknowledged that not 

everyone does. In mathematics, we are not 

quite there yet. Most results are served without 

a list of logical ingredients. Some assumptions, 

like the Axiom of Choice, tend to come with a 

warning label, but others, like the Law of the 

Excluded Middle, are folded so deeply into the 

dough of standard reasoning that they are 

rarely mentioned at all.

For the omnivores in this world, this is 

unproblematic, since they do not have to watch 

what they eat. However, for those who follow a 

constructive diet, this makes the landscape hard 

to navigate. One may only realize a proof 

contains meat when it is already on their plate 

— provided it has not been so thoroughly 

processed that you can no longer tell. So, 

maybe we can take inspiration from the 

transparency movement in the food industry 

and start labeling our results; not to restrict, but 

to inform. Not only would it be helpful to 

constructivists, it would give any mathematician 

more insight into what depends on what, and 

remind all of us that logical assumptions are not 

neutral background noise: they shape what can 

be said, and how.

Of course, not everyone is aware of the 

assumptions underlying their proofs — largely 

because we are not trained to recognize them. 

But that very invisibility is part of the problem: 

how can we be precise in our reasoning if we 

are unaware of the tools we rely on? As 

mathematicians, we value precision, so it only 

makes sense to be exact about the very 

foundations we build upon.
1. In this analogy, veganism naturally corresponds to intuitionism: a stricter, more demanding version, often met with 
polite confusion at dinner parties.
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Once we start listing our ingredients, a natural 

next step follows: we begin to wonder which 

recipes succeed without certain controversial 

components. We try reworking them, testing 

whether the dish remains just as satisfying 

when prepared with alternative methods. This 

does not only benefit constructivists — it 

enriches our collective mathematical cuisine. 

Sometimes, we discover that the meat was 

never essential. Other times, it proves so central 

that removing it transforms the result entirely. 

But even then, the exercise teaches us 

something important: apparently, this dish is 

unavailable to vegetarians. On the bright side, 

when we do manage to find a constructive proof 

of a formerly classical result, the dish becomes 

one that everyone can enjoy. Classical 

mathematicians can still add the Law of the 

Excluded Middle to taste — maybe to enrich the 

flavor of the result — but the base recipe is now 

accessible to all.

If we care about foundations — and as 

logicians, I certainly hope that we do — then we 

should care about transparency. So perhaps it is 

time we start treating our proofs a little more 

like recipes. Let us label them as being 

constructive or not, adapt them, and 

occasionally rethink them from a position that 

steps away from the norms - after all, history 

shows us that what is common practice is not 

always the most desirable or enlightened way 

forward. If we are transparent about our 

ingredients, everyone, regardless of their diet, 

knows exactly what they are being served. And 

who knows? Maybe one day, using excluded 

middle in a proof will raise as many eyebrows as 

pineapple on pizza — an unexpected ingredient 

that sparks a heated debate.
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THE ILLOGICIANS’ 
CONVERSATION
VALENTIN RICHARD | LINGUISTICS
In this crazy discussion, each speech turn 
contains a semantically deviant or 
infelicitous utterance. Can you guess what is 
causing each oddity?

B: Hi Gottlob! In what way are you doing?

G: Yes! What about you, Bertrand?

B: I’m very happy! Yesterday, I came back from a 

trip to France or Paris.

B: Most of the master students came with me, 

that is, all of them. It was their first time in 

Paris.

G: Really? It surprises me, who has ever been to 

Paris.

B: After that trip, every student stopped hating 

Paris. Only one student used to hate Paris.

B: We went to a restaurant. We ate a French 

ratatouille. Then we went to the Louvre 

museum. It was delicious!

G: Colorless green ratatouilles always sleep 

deliciously.

B: Some students took a dessert. They ate 

democracy.

G: Great! And how was the Louvre? Did you 

learn that fact about the painting Mona 
Lisa?: It is Lisa Gherardini that Francesco del 

Giocondo ordered a painting that portrays.

B: I did! This is such a famous piece. If no 

student took a selfie in front of this painting, it 

will probably be published online.

G: Here is a fun fact you might have missed, 

though. Five of the six Da Vinci paintings 

exhibited in the Louvre are made of oil on a 

panel. It is made of chalk on paper. Can you 

guess which one it is?

B: It is not. Mona Lisa and it might be  Mona 
Lisa.

G: The solution is: DA VINCI made Portrait of 
Isabella d’Este with chalk on paper, not 

someone else.

B: Oh, I didn’t know that. More people like Da 

Vinci than I do. Do you like art history?

G: I once read a book about gender equality. By 

the way, where was your hotel?

B: On earth.

G: Nice! But how much did you not pay for all of 

this?

B: A lot! The university didn’t give every student 

any money for the trip.

G: At least, in France you may pay in euros or in 

pounds. So you didn’t pay change fees. Did 

you take the time to get informed about 

French politics?

B: I did! It is false that the king of France is bald. 

And some ministers look authoritarian.

G: Be careful what you say! Any French student 

might enter this room. He disagrees with you.

B: Right! I will go back to my office and be as 

mute as a ringing fire alarm. See you!

The answers can be found at https://
valentin-d-richard.fr/Misc/illogician.pdf
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MERKLE PUZZLES:
HOW TO TELL A SECRET
DAVID KÜHNEMANN | COMPUTATION
It is Christmas 1974, in the midst of the cold war, 

and intelligence officer Alice is trying to reach 

her asset Bob, who is undercover in Budapest, 

from her apartment in Amsterdam. She knows 

Bob has confidential information to share with 

her, but the two of them suspect their telephone 

line may be tapped. Indeed, East German 

counter-intelligence agent Eve is listening in to 

their conversation. The problem of securely 

transmitting information over an insecure 

channel has been studied for thousands of 

years and could, for many purposes, be 

considered a solved problem by the 1970s. In 

particular, ciphers like the one-time pad 

allowed for unbreakable encryption of 

communication as long as the two 

communicating parties agreed on a large 

enough shared secret, the so-called secret key, 

ahead of time. Unfortunately for our two 

protagonists, Bob lost the secret key he had 

agreed with Alice during his latest undercover 

operation. Up until this point in history, 

conventional wisdom was that Alice and Bob 

were now screwed: That without a secret key 

shared ahead of time, there was no way for Bob 

to transmit information such that Alice could 

decipher it but eavesdropping Eve could not.

Luckily for Alice, just a few months before on the 

other side of the world, UC Berkeley 

undergraduate student Ralph Merkle wrote a 

course project proposal that challenged this 

long-standing belief (Merkle 1974). His idea, 

nowadays known as Merkle puzzles, consituted 

the world’s first key exchange protocol.

KEY EXCHANGE PROTOCOLS

A key exchange protocol is a set of instructions 

telling Alice and Bob what to compute and send 

over the channel, such that, after the execution 

of all instructions, both obtain the same secret 

key which is oblivious to any eavesdropper like 

Eve. Concretely, we parameterize the effort it 

takes Alice and Bob to execute the protocol by a 

security parameter ᵜ�. (This could for example 

be the total number of steps they need to 

execute, but we’ll see a better quantity soon.) 

We then measure the amount of effort it would 

take Eve to have any real chance at recovering 

the secret Alice and Bob agreed to just from the 

information sent via the channel in terms of the 

same security parameter ᵜ�. A key exchange 

protocol requires that Eve needs to exert strictly 

more effort than Alice and Bob. A protocol is 

more secure the larger the gap between these 

two is. Once Alice and Bob have agreed on a 

shared secret, they can use the existing 

cryptographic protocols to communicate 

securely.

ASYMMETRY IN COMPUTATION

Merkle’s breakthrough result relies on an 

observation about asymmetry in the world of 

computation, specifically that we think some 

functions ᵛ� are easy to compute for any given 

input ᵝ� but hard to invert. Breaking up a 

completed jig-saw puzzle does not lose any 

information in the sense that most jig-saw 
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1. There are (highly contrived) cryptographic protocols for which this step goes wrong (Canetti, Goldreich, and Halevi 
2004), but this is not an issue here.

2. We actually look at the more formal description of Merkle Puzzles given  by (Barak and Mahmoody-Ghidary 2017).

puzzles have only one sensible arrangement, 

but clearly the process of breaking up the 

completed puzzle is much easier than putting 

the individual puzzle pieces back together. Some 

mathematical problems seem to be of a similar 

nature. For example: Multiplying prime numbers 

together is easy, while we don’t know any 

efficient procedure to split composite numbers 

into all of their prime factors. The notion of non-

invertibility needed for Merkle puzzles is as 

follows: We want some easy-to-compute 

function ᵛ�, such that given a (uniformly) random 

input ᵝ�, no algorithm can successfully 

determine an ᵝ�′ such that ᵛ�(ᵝ�) = ᵛ�(ᵝ�′) but with a 

negligible probability. There are many candidate 

functions that are believed to exhibit this 

behavior, but actually proving this would have 

wide-ranging implications (including that ᵚ� ≠ 
ᵚ�ᵚ�) and seems beyond our current methods. 

Instead, for analyzing a protocol like this we 

turn to an idealized form of such a function, a 

so-called Random Oracle (RO). Think of a RO as 

a single magic box that each of Alice, Bob, and 

Eve have access to and can query with an input 

ᵝ�. The first time the RO is queried on the input 

ᵝ�, it picks a random value ᵝ� to output. Every 

subsequent time the RO is queried with the 

same ᵝ� it outputs the same ᵝ�. It is easy to see 

that such a RO is hard-to-invert, since given a ᵝ� 

there is clearly no better strategy of finding the 

corresponding input ᵝ� than simply trying out all 

possible inputs. Of course, random oracles don’t 

actually exist in the real world, but in practise 

we can instantiate (substitute) them with any of 

the candidate hard-to-invert functions.1

MERKLE PUZZLES

Let ᵜ� ∈ ℕ be the security parameter and ᵛ�ᵚ�: 

{ᵾ�, …, ᵜ�ᵾ�} → {ᵾ�, ᵾ�}n be a random oracle that 

maps inputs between ᵾ� and ᵜ�2 to binary strings 

of length ᵜ�. The Merkle Puzzle key exchange 

now proceeds as follows:2

1. Alice chooses ᵾ�ᵾ�ᵜ� numbers ᵝ�ᵾ�, …, ᵝ�ᵾ�ᵾ�ᵜ� 

uniformly at random from the range between 

1 and ᵜ�2. For each ᵝ�i she queries the RO and 

receives an output ᵛ�ᵜ� = ᵛ�ᵚ�(ᵝ�ᵜ�). She sends all 

ᵾ�ᵾ�ᵜ� values ᵛ�ᵾ�, …, ᵛ�ᵾ�ᵾ�ᵜ� to Bob via the channel.

2. Analogously, Bob chooses ᵾ�ᵾ�ᵜ� numbers 

ᵝ�ᵾ�, …,ᵝ�ᵾ�ᵾ�ᵜ� uniformly at random from the 

range between 1 and ᵜ�2. For each ᵝ�i he 

queries the RO and receives an output ᵛ�ᵜ� = 
ᵛ�ᵚ�(ᵝ�ᵜ�). He sends all ᵛ�ᵾ�, …, ᵛ�10n over the 

channel.

3. If there exists a pair (ᵜ�, ᵜ�) such that ᵛ�ᵜ� = ᵛ�j, 

then both Alice and Bob take the 

lexicographically smallest (first) such pair and 

take ᵝ�ᵜ� and ᵝ�j as their secret keys respectively. 

We call such a pair a collision. If no such 

collision exists, they both take ᵾ� as their 

secret key.

In our model, the security parameter ᵜ� 

therefore quantifies how many times Alice and 

Bob have to query the RO (ᵾ�ᵾ�ᵜ� times each). This 

is a good measure as computing the hard-to-

invert function which the RO stands in for is 

usually the most computationally intensive part 

of the protocol by far. Alice and Bob will agree to 

the same (non-trivial) key if:

1. the RO is injective, whereby we ensure any 

collision in step 3 actually leads to Alice and 

Bob’s adopted keys ᵝ�i and ᵝ�j being equal, and

2. a collision occurs.

The chance that the random oracle assigns two 

different inputs ᵝ�1 and ᵝ�2 the same output ᵝ� is 
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ᵾ�/ᵾ�ᵜ�. By a union bound, the likelihood of this 

not happening for any of the  ≈ ᵜ�ᵾ� ⋅ ᵜ�2 pairs of 

distinct inputs is at least ᵾ� - ᵜ�ᵾ�/ᵾ�ᵜ� which quickly 

approaches 100% as we increase the security 

parameter ᵜ�.

THE BIRTHDAY PROBLEM

As for point 2, one might intuitively think that 

because Alice and Bob only pick ᵾ�ᵾ�ᵜ� random 

values from a possible range of ᵜ�2 (which is far 

larger for even moderate choices of ᵜ�) there is a 

good chance of no collision occurring at all. To 

see why this is intuition is wrong, let us consider 

the closely relate birthday problem. How large 

does a friend group have to be for at least two 

people in the group to share the same birthday? 

Despite the probability of two people sharing 

the same birthday being just ᵾ�/ᵾ�ᵾ�ᵾ�, it turns out 

that with just 23 people, it is more likely than 

not that two of them do in fact share the same 

birthday. Intuitively, this is because we have to 

consider all possible pairs of people, of which 

there are (ᵾ�ᵾ� ⋅ ᵾ�)/ᵾ�ᵾ� = ᵾ�ᵾ�ᵾ� within a group of 

23. Applying this to our collision problem, the 

chance of no collision happening turns out to be 

less than 1 in ᵾ�100 (for ᵜ� at least 10). Therefore, 

Alice and Bob fail to agree on a shared secret 

key with only a miniscule probability.

NO LUCK FOR THE EAVESDROPPER

What about Eve, who has been listening in this 

whole time? All the information she sees 

communicated are the ᵛ�is and ᵛ�is. She can of 

course also find the collision ᵛ�ᵜ� = ᵛ�j but the only 

way she can compute the underlying shared 

secret is to invert the random oracle given the 

output ᵛ�ᵜ� = ᵛ�j. As mentioned earlier, there can 

be no better strategy than just trying out all ᵜ�2 

possible inputs, and we expect her to find the 

correct input only after ᵜ�ᵾ�/ᵾ� tries. As we 

increase the security parameter ᵜ�, this effort 

soon exceeds the ᵾ�ᵾ�ᵜ� queries needed by Alice 

and Bob, meaning Merkle Puzzles indeed form a 

key exchange.

OUTLOOK

The “square” gap between the effort of 

magnitude ᵜ� by Alice and Bob against the  ≈ ᵜ�2 

required by Eve to recover the shared secret is 

not considered large enough for practical use. 

Luckily, only two years later in 1976, Whitfield 

Diffie and Martin Hellman (whom Merkle had 

approached after his course instructor rejected 

his project idea) developed an improved key 

exchange with a much larger gap in effort (ᵜ� vs 

≈ ᵾ�∛ᵜ�), using not any hard-to-invert function, 

but one specific candidate and its special 

algebraic properties (Diffie and Hellman 1976). 

More than 40 years after they were conceived, 

Boaz Barak and Mohammad Mahmoody proved 

that Merkle Puzzles are in fact optimally secure 

among key exchanges that work with arbitrary 

hard-to-invert functions (Barak and Mahmoody-

Ghidary 2017).
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ROTATING SHAPES: 
THE LONG(EST) LINE
WHY IS IT SO LONG AND WHY CAN'T WE MAKE 
IT LONGER?
MAX WEHMEIER | MATHEMATICS
“The long line is a topological space somewhat 

similar to the real line, but in a certain sense 

›longer‹.”1

To understand this statement, we will firstly do a 

short recap of topology. A lot of statements will 

just be given, but the reader is encouraged to 

verify that these hold.

TOPOLOGYBASICS

A topological space is a tuple (ᵛ�, ᵊ�) consisting 

of a non-empty set ᵛ� and a topology ᵊ� on ᵛ�, 

i.e.  ᵊ� is a collection of subsets of ᵛ�, that 

contains ∅ and ᵛ� and is closed under binary 

intersections and arbitrary unions. We call the 

elements of ᵊ� the open sets in ᵛ�. 

When ᵊ� is understood, we sometimes refer to 

the whole space just by ᵛ�. We call a collection 

ℬ ⊆ ᵊ� a basis for ᵊ� if every element of ᵊ� is 

the union of elements in ℬ. In this case, we say 

that ℬ generates the topology. 

Similarly, every set ℬ ⊆ ᵊ�(ᵛ�), which is closed 

under intersections and covers ᵛ� (i.e.  ⋃ℬ = ᵛ�) 

forms a basis for some topology. 

For example, if we have a linearly ordered space 

(ᵛ�,  <) with at least two elements, then we can 

define an interval as the set of all elements 

between two given points. The collection of all 

intervals forms a basis for the order topology 

on ᵛ�. This topology will play an important role 

for the long line.

REVISITING ℝ+

Before we look at the long line, we will construct 

the long ray as a preliminary step. To make the 

construction easier to understand, we will first 

look at a different way to view the topological 

space of non-negative real numbers ℝ+ 

(including ᵾ�). Note that the usual topology on 

ℝ+ is just the order topology given by the usual 

ordering. 

One can easily see that this basis as described 

earlier is uncountable. However, since the 

rationals are dense in the reals, we can restrict ᵛ� 

1. Cf. https://en.wikipedia.org/wiki/Long_line_(topology)
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and ᵛ� to be rationals and would obtain the 

same topology. 

This means that ℝ+ is second countable, 

i.e.  has a countable basis. Furthermore, this 

makes it first countable: Every point has a 

countable neighborhood basis. 

Given a point ᵝ� ∈ ᵛ�, we call a collection ℬᵝ� ⊆ 
ᵊ� of opens containing ᵝ� a neighborhood basis 

if for every open set ᵛ� containing ᵝ�, there is a ᵛ� 
∈ ℬx, such that ᵛ� ⊆ ᵛ�. So by considering

we see that second countable spaces are also 

first countable. Instead of viewing ℝ+ as the 

subset of ℝ where all values are greater or 

equal to ᵾ�, we can also construct it via

This has a nice intuition: Since every element is 

a pair (ᵜ�, ᵜ�) with a natural number ᵜ� and a 

decimal ᵜ�, we can view it as the number ᵜ� + ᵜ�. 

Moreover, if we give it the lexicographical 

ordering by setting (ᵜ�, ᵜ�) < (ᵜ�, ᵜ�) iff ᵜ� < ᵜ� or 

ᵜ� = ᵜ� and ᵜ� < ᵜ�, it becomes order-isomorphic 

to ℝ+ with the usual order. Thus we get the 

usual topological space if we equip it with the 

order topology. Technically, it is only 

homeomorphic to the original space, but since 

homeomorphisms are the isomorphisms in 

topology, we will consider them to be the same. 

You might notice that instead of ℕ, we could 

have written the ordinal ω. 

SO WHAT IF WE USED DIFFERENT 

ORDINALS? 

For finite ordinals (apart from ᵾ�), we essentially 

get the intervals [ᵾ�, ᵜ�), which are 

homeomorphic to [ᵾ�, ᵾ�) by division by ᵜ�. Using 

the fact that [ᵾ�, ᵾ�) ≅ ℝ+, one can inductively 

show that for all countable ordinals the result is 

still homeomorphic to ℝ+. But what happens 

after that?

CONSTRUCTING ᵚ�+

The smallest uncountable ordinal is ω1. 

If you are unfamiliar with ordinals, you can 

imagine the natural numbers, but there are 

uncountably many of them. 

By saying that they are like natural numbers, we 

want to emphasize that every number has a 

unique successor. For a deeper digression, we 

refer to (Levy 2012). 

This way, we can define

Giving it the lexicographical ordering and the 

order topology yields the long ray. 

Firstly, let us look at why the long ray is a line, 

i.e.  in what sense is it similar to ℝ+. As we will 

see it does not globally look like ℝ+, so it is not 

homeomorphic to it. 

However, it is locally homeomorphic to it. Every 

point has a neighborhood which is 

homeomorphic to ℝ+. Indeed, if (α, ᵜ�) ∈ ᵚ�+, 

then α must be a countable ordinal. So α + ᵾ� is 

still countable and

Since α + ᵾ� is also countable, we already 

discussed that ᵛ� must be homeomorphic to ℝ+, 

so it is the neighborhood we were looking for. 
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Because local homeomorphisms preserve first 

countability, we get that ᵚ�+ is first countable.

PROPERTIES OF ᵚ�+

In ℝ+, there are sequences like ᵛ�ᵜ� := ᵜ� that do 

not converge. This can almost not happen in ᵚ�+: 

While alternating sequences still do not 

converge, every sequence has a convergent 

subsequence, which topologists call sequential 
compactness. 

For any sequence (ᵛ�ᵜ�)ᵜ� ∈ ℕ in ᵚ�+, we know that

ᵛ�ᵜ�ᵜ� ᵛ�ᵜ�ᵜ� ᵜ� with all αn countable. Thus the 

supremum of them must be a countable ordinal 

α. 

So all αn are smaller than ᵛ�:= α+ᵾ�. (I use the 

notation β:= (β,ᵾ�) to improve readability.) Thus 

ᵛ�ᵜ� ∈ [ᵾ�,ᵛ�]$ for all ᵜ�. 

We have already seen that [ᵾ�,ᵛ�) := (α +ᵾ�) × 
[ᵾ�,ᵾ�) ≅ [ᵾ�,ᵾ�), so it should not be hard to 

convince yourself that $[ᵾ�,ᵛ�] ≅ [ᵾ�,ᵾ�]. Since the 

latter is sequentially compact, our sequence 

must converge. This means that the long ray is 

too long for sequences to diverge. Now we can 

also conclude that ᵚ�+ cannot be homeomorphic 

to ℝ+: if we had

then instead of calculating the limit of ᵛ�ᵜ� := ᵜ� in 

ℝ+, we could calculate the limit of ᵛ�ᵜ� := ᵛ�(ᵛ�ᵜ�) in 

ᵚ�+. 

If ᵛ� := ᵜ�ᵜ�ᵜ� ᵛ�n in ᵚ�+, then ᵛ� := ᵛ�-ᵾ�(ᵛ�) would be 

the limit of ᵛ�n in ℝ+. However, we know that this 

sequence does not converge in ℝ+. Thus they 

cannot be homeomorphic.

I already hinted at the fact that the long line is 

in a sense the “longest” a line can be. What I 

mean by that is that spaces constructed via

with an ordinal κ > ω1 fail to be locally 

homeomorphic to ℝ+. And if they do not even 

locally look like ℝ+, in what sense is that space 

still a line? 

If ᵚ�+
κ were locally homeomorphic to ℝ+, then 

there must be a neighborhood ᵛ� of ω1 ∈ ᵚ�+
κ 

and a homeomorphism ᵛ�: ᵛ� ≅ ℝ+. Since ℝ+ is 

path-connected and ᵾ� ∈ ᵛ�, there is a path γ 

from f(ᵾ�) to ᵛ�(ω1). 

Since ᵛ�-ᵾ� ∘ γ is continuous, [ᵾ�, ᵾ�] is compact, ᵚ�+
κ 

is Hausdorff and we can assume that γ is 

bijective, by (Munkres 2000, Th. 26.6) this would 

mean that ᵛ�-ᵾ�∘ γ is a homeomorphism. But since

the long ray would be homeomorphic to some 

subset of [ᵾ�, ᵾ�]. This must be of the form [ᵾ�, ᵜ�) 
for ᵜ� ∈ (ᵾ�, ᵾ�]. 

But since [ᵾ�, ᵜ�) is homeomorphic to ℝ+, we 

would get ᵚ�+ ≅ ℝ+. But we concluded earlier this 

cannot happen, so there cannot be any path 

from ᵾ� to ω1. After adding just one more copy of 

[ᵾ�, ᵾ�) to ᵚ�+, it fails to be locally homeomorphic 

to ℝ+. So the long ray is indeed the longest a ray 

can be.
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THE LONG LINE

So far, we have only talked about the long ray, 

although the article is supposed to be about the 

long line. It is rather easy to get the long line 

from two long rays: We can just glue them 

together at ᵾ�. 

Formally we can define this as

where ∼ is the smallest equivalence relation 

identifying both zeros, but nothing more. The 

intuition for this is literally taking two long rays 

and glueing them together at ᵾ� with one 

pointing into the “positive” direction and the 

other in the “negative” direction.

We have seen many interesting properties of ᵚ�+, 

so which ones does the long line have? Basically 

all of them! 

This is because the subspace topology on ᵚ�+ 

given by ᵚ� is just the topology we were 

considering the whole time on it. In a similar 

way as for the long ray, we can see that the long 

line is locally homeomorphic to ℝ (since it now 

does not have a smallest element). But it cannot 

be homeomorphic to ℝ, because then the long 

ray would have to be homeomorphic to ℝ+. So it 

is first countable, but cannot be second 

countable (otherwise the long ray would have to 

be second countable as well). 

It is also sequentially compact by a very similar 

argument. So we can just claim all these results 

now because we did the work earlier.

A MODIFIED CLASSIFICATION THEOREM

The topology-minded people might remember 

the classification theorem of connected ᵾ�-

manifolds. It states that up to homeomorphism 

the only connected ᵾ�-manifolds are ℝ and the 

circle ᵛ�1. Intuitively, connected ᵾ�-manifolds are 

topological spaces that are locally 

homeomorphic to ℝ and satisfy some additional 

criteria. 

You might notice that the long line is locally 

homeomorphic to ℝ, but not homeomorphic to 

either ℝ or ᵛ�1, so it is not covered by this 

theorem. This is because manifolds are required 

to be second countable. 

After dropping this condition, there are up to 

homeomorphism four connected ᵾ�-manifolds: 

ℝ, ᵛ�1, ᵚ� and the half-long line, which is ᵚ�+ glued 

together with ℝ+ (Frolík 1962). 

So the long line does not only serve as a funny 

counterexample, but plays an important role in 

the classification of topological spaces.
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INGREDIENTS AND LOGIC: 
IS PUTTING PINEAPPLE ON PIZZA 
RATIONAL?
GIUSEPPE MANES | PHILOSOPHY, COMPUTATION
A MOL DINNER

After a week of intense study, four MoL students 

- ᵚ�, ᵚ�, ᵛ�, and ᵚ� - met at a renowned Amsterdam 

pizzeria. The restaurant offered a special deal:

Any group of students ordering pizza from the 
menu (excluding pineapple) would get 10% off 

and free dessert.
The chef, ᵚ�, considered pineapple to be the 

worst topping and explained that it is a very bad 

combination in terms of flavors, and also does 

not correspond to traditional standards. So, he 

deliberately excluded it from the deal in order to 

convince people not to order it. The menu is 

divided in two sections Traditional and Non-
Traditional. Apart from the Pineapple Pizza, all 

the other ones in the menu are valid for the 

deal, therefore the students can choose freely. 

Furthermore, we notice that the number of 

Traditional and Non-Traditional pizzas is the 

same, excluding the pineapple one.

All the students being Logicians, they think of 

themselves as rational agents, in the Bayesian 

sense, so each of them has a coherent initial 

distribution, i.e.  their credence distribution over 

their belief is a probabilistic distribution. In 

particular, we have that given the set of 

toppings they assign their preference 

corresponding to the belief in sentences of the 

form

I like the pizza (with) ᵚ�.

respecting Kolmogorov’s Axioms.

We call the sentences of this type φA, where ᵚ� is 

the flavor of the pizza. In order to study the 

distribution we will use the credence function 

ᵛ�ᵜ� : φᵚ� → [ᵾ�, ᵾ�]. The distributions will be the 

following:

• ᵚ� is a food anarchist and loves pizza with 

strange flavors like Natto1 (that unfortunately 

is not on the menu), and would prefer to eat a 

pizza with no conventional topping instead of 

the “boring” traditional ones. Therefore, she 

will have a distribution in the sentences of the 

type φ as follows, where ᵚ� is the section of 

Traditional Pizzas in the menu and ᵚ� is the 

section of Non-Traditional Pizzas:

• ᵛ�ᵜ�(φᵚ�ᵛ�ᵜ�ᵜ�ᵜ�) = ᵾ�.ᵾ�
• ᵛ�ᵜ�(φᵛ� ∈ ᵚ�) = ᵾ�.ᵾ�/|ᵚ�|
• ᵛ�ᵜ�(φᵛ� ∈ ᵚ�) = ᵾ�.ᵾ�/|ᵚ�|

• ᵚ� loves Sauerkraut pizza (not on the menu) 

since it was a pizza that his mom always 

cooked for him when he was a child. He also 

loves Italy and traditional cuisine so he 

prefers traditional ingredients in his pizzas. 

Therefore, he will have a distribution in the 

sentences of the type φ as follows:

• ᵛ�ᵜ�(φᵛ�ᵛ�ᵜ�ᵛ�ᵜ�ᵜ�ᵜ�ᵛ�ᵜ�ᵜ�) = ᵾ�.ᵾ�
• ᵛ�ᵜ�(φᵛ� ∈ ᵚ�) = ᵾ�.ᵾ�/|ᵚ�|
• ᵛ�ᵜ�(φᵛ� ∈ ᵚ�) = ᵾ�.ᵾ�/|ᵚ�|

• ᵛ� is an open-minded guy that loves traditional 

food but also likes experimenting, and he has 

a slight preference for traditional tastes to 

1. Natto is a traditional Japanese food made from soybeans that have been fermented.
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which he is used to but doesn’t mind in 

principle to try new food. Therefore, he will 

have a distribution in the sentences of the 

type φ as follows:

• ᵛ�ᵜ�(φᵛ� ∈ ᵚ�) = ᵾ�.ᵾ�/|ᵚ�|
• ᵛ�ᵜ�(φᵛ� ∈ ᵚ�) = ᵾ�.ᵾ�/|ᵚ�|

• ᵚ� is an elegant and sophisticated person, and 

she loves flavors combinations in this pizzeria, 

of which she is a common client. The only 

pizzas that she will not eat are the pizzas with 

meat since she is a vegetarian. Therefore, she 

will have a distribution in the sentences of the 

type φ as follows:

• ᵛ�ᵜ�(φᵚ�ᵜ�ᵚ�ᵛ�ᵛ�ᵜ�) = ᵾ�/|ᵚ�ᵜ�ᵚ�ᵛ�ᵛ�ᵜ�|

BAYESIAN PRINCIPLES AND 

IRRATIONALITY MEASURES

According to the Bayesian framework we are 

using, we have that an agent should accord 

their credence to the credence of an expert. This 

law is called the Expert Principle (Elga 2007), 

which is formally expressed by the following 

conditional probability  

where ᵛ�ᵜ�E is the credence distribution of the 

expert. This principle is one of the many 

rationality constraints possible in the Bayesian 

framework.

Now, let’s return to our group of students. We’ll 

now present an example to show how these 

kinds of principles can be applied within the 

theory.

Let our Logicians update their credence 

distribution according to the credence of our 

expert, namely the chef ᵚ�. All of them will align 

their credence on the proposition φᵚ�ᵜ�ᵜ�ᵛ�ᵛ�ᵜ�ᵜ�ᵜ�ᵛ� with 

the credenceof the chef in it, that is ᵾ�, leaving 

the other propositions in the same way. This 

updating lead our Logicians to behave as 

irrational agents: by the Bayesian Probabilistic 

framework (i.e.  the Bayesian epistemological 

account with the least amount of principles that 

an agent should respect to be rational, namely 

only Kolmogorov’s Axioms) the agent always 

needs to have normalized credences 

distributions. In our example this means that 

each agent needs to have credences such that 

ᵛ�ᵜ�(φᵚ�ᵛ�ᵜ�ᵜ�ᵜ�ᵛ�ᵜ�ᵜ�ᵜ�ᵛ�) + ᵛ�ᵜ�(φᵚ�ᵜ�ᵜ�ᵜ�) + ᵛ�ᵜ�(φᵚ�ᵜ�ᵜ�ᵛ�ᵛ�ᵜ�ᵜ�ᵜ�ᵛ�) = ᵾ� 

and all the credences have to be more non-

negative real values (just by a simple application 

of Kolmogorov Axioms). If our agents don’t 

normalize their credence in the update process, 

we have that they cannot be coherent and, 

therefore irrational.

Now, the question that we raise and that we are 

interested to investigate is the following:

Which of our agents is the least irrational?

This is equivalent to asking which of our agents 

is closer to a coherent distribution.

In order to study this matter, we consider the 

theory exposed in (Staffel 2019) where the 

general aim is to construct a theoretical 

framework that can compute the distance of an 

irrational agent to the closest coherent position. 

We will not consider the whole theory, but only 

a naïve version of it, where we take as our 

distance measure the Absolute Distance 

between a point of a rational distribution and a 

point of an irrational distribution, which is also 

2. We are assuming that this set is finite.
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argued in (Staffel 2019) to be the best one for 

this purpose.

More formally, each agent has a set of 

credences ℬ = {φᵾ�, …, φᵜ�}2 for some ᵜ� ∈ ℕ, 

and we can represent this set with a point in a 

ᵜ�-dimensional Cartesian Space. Then, we will 

uniquely assign each agent to a point and, 

based on principles of probability, we can 

construct the region of our space that 

corresponds to a rational distribution. Then 

using the Absolute Distance we can calculate 

the minimum distance between the points 

representing the irrational credences 

distributions of the agents. We can also 

optimize the region selected using Scores, like 

Brier’s or the Absolute one (Titelbaum 2022), 

which are distance measures between the 

credences and the possible worlds (in order to 

do this we also need some minimization in the 

process).

We can see an example as follows: Consider our 

set ᵚ� = {φᵚ�ᵛ�ᵜ�ᵜ�ᵜ�ᵛ�ᵜ�ᵜ�ᵜ�ᵛ�} and ᵚ� = {φᵚ�ᵜ�ᵜ�ᵛ�ᵛ�ᵜ�ᵜ�ᵜ�ᵛ�, φᵚ�ᵜ�ᵜ�ᵜ�}. 

Accordingly we have that our distributions will 

be the following after the update

• ᵚ� will have a credence of ᵾ�.ᵾ� in φᵚ�ᵛ�ᵜ�ᵜ�ᵜ�ᵛ�ᵜ�ᵜ�ᵜ�ᵛ� and 

ᵾ�.ᵾ�ᵾ� in φᵚ�ᵜ�ᵜ�ᵜ� (Pizza Natto is not in the menu 

so we will not consider it)

• ᵚ� will have a credence of ᵾ�.ᵾ� in φᵚ�ᵛ�ᵜ�ᵜ�ᵜ�ᵛ�ᵜ�ᵜ�ᵜ�ᵛ� and 

ᵾ�.ᵾ�ᵾ� in φᵚ�ᵜ�ᵜ�ᵜ� (Pizza Sauerkraut is not in the 

menu so we will not consider it)

• ᵛ� will have a credence of ᵾ�.ᵾ� in φᵚ�ᵛ�ᵜ�ᵜ�ᵜ�ᵛ�ᵜ�ᵜ�ᵜ�ᵛ� and 

ᵾ�.ᵾ� in φᵚ�ᵜ�ᵜ�ᵜ�

• ᵚ� will have a credence of ᵾ�/ᵾ� both in φᵚ�ᵛ�ᵜ�ᵜ�ᵜ�ᵛ�ᵜ�ᵜ�ᵜ�ᵛ� 

and φᵚ�ᵜ�ᵜ�ᵜ�

Applying our further constraint we have that 

ᵛ�ᵜ�(φᵚ�ᵜ�ᵜ�ᵛ�ᵛ�ᵜ�ᵜ�ᵜ�ᵛ�) = ᵾ�. Since all our agents have a ᵾ� 

credence on φᵚ�ᵜ�ᵜ�ᵛ�ᵛ�ᵜ�ᵜ�ᵜ�ᵛ�, as they update according 

to the Expert Principle, we can consider a 

plane to represent the measures.

It is easy to see that any rational distribution 

(with all the constraints involved) has to be a 

point in the line ᵝ� = −ᵝ� + ᵾ� for ᵝ� ∈ [ᵾ�, ᵾ�]. Then 

minimizing the Absolute Score (which we 

choose in order to use a same distance 

measure) we obtain that the best point is the 

uniform distribution between the two 

propositions, i.e.  the point ᵚ� = (ᵾ�.ᵾ�, ᵾ�.ᵾ�) in our 

plane. Then doing some calculation we can 

easily see that the closest one to minimize his 

credence is ᵚ�. Also, ᵛ� is really close to get a 

coherent distribution, if we don’t consider the 

Score, but it wouldn’t be the optimal distribution 

given all the possible worlds (in our case 2 since 

we must choose a pizza and only one pizza, so 

one of them has to be true).

COMPUTATIONAL COST OF THE 

BAYESIAN FRAMEWORK

This framework is really nice, but there is an 

issue given by the computational cost of 

Bayesian epistemology that grows with the 

number of principles that we consider, and the 

number of propositions in the input (thus the 

number of possible worlds). Also, considering 

the simple case presented in this article, one 

can easily imagine that computing the most 

rational agent, when both the number of 

students and the number of pizzas increase, 
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becomes demanding from a computational 

point of view. In fact, a lot of different 

algorithms have been presented using different 

types of measures that grow exponentially with 

the input size. So our last question is: Can a 
real agent realistically use this theory to 
guide their reasoning in daily situations?

In (Kwisthout, Wareham, and Van Rooij 2011), 

this computational cost has been studied, and 

furthermore has been evidenced that a lot of 

problems in the field can be proven to be ᵚ�ᵚ�-

complete problems. A problem of this kind is the 

Most Probable Explanation (ᵚ�ᵚ�ᵚ�). Here, given a 

set of hypotheses and a set of observed pieces 

of evidence, along with a probabilistic model 

that describes how these are related (such as a 

Bayesian network), the task is to determine 

which truth assignment to the hypotheses is 

most likely to be correct, given the observed 

evidence. In other words, we are looking for the 

overall combination of truth values for the 

hypotheses that has the highest conditional 

probability according to the model.

Algorithms of the kind that we presented here, 

and more generally in all Bayesian 

Epistemology, can be proven to be NP-complete 

as well. This kind of task can quickly become too 

demanding for a real agent, because the 

computational complexity of the underlying 

algorithm grows exponentially with the amount 

of information involved. In other words, as the 

number of hypotheses and observations 

increases, finding the most probable 

assignment becomes increasingly hard from a 

computational point of view.

Therefore, while this theory offers a 

comprehensive framework for assessing both 

rationality and irrationality, its computational 

demands make it impractical for use by real 

agents.
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WHEN "IF" COMES 
AFTER "THEN"
THOMAS VAN DER LEER | LINGUISTICS
Suppose you want to tell someone that you 

believe that the first edition of The Illogician 

will be a success, provided that the articles in it 

are well written. You could convey this message 

in the usual way, by uttering a sentence such as 

(1).

(1) If the articles are well written, The Illogician 

will be a success.

However, it would not be strange to instead say 

(or hear) exactly the same sentence, but in a 

different order:

(2) The Illogician will be a success, if the articles 

are well written.

We thus see variation in the clause order of 

conditional sentences. The canonical order is 

visible in (1), where the antecedent precedes the 

consequent, whereas the conditional in (2) is 

‘non-canonically’ ordered: here, the consequent 

precedes the antecedent.

The existence of this variation is, I think, quite 

interesting. After all, nothing changes to the 

literal meaning of (1) if you for some reason 

decide to formulate it as (2). Why, then, do we 

sometimes decide to utter conditionals in a 

different order, or do we at least find this 

decision acceptable? What makes us prefer, in 

certain situations, the non-canonical order over 

the canonical one?

CONNECTEDNESS

As with many linguistic phenomena, it is very 

likely that the answer to this intriguing question 

is not one-sided. More factors are probably in 

play, influencing us to prefer one order over the 

other. One such factor, for instance, could have 

to do with the different social functions 

conditionals can carry out. For example, a 

conditional could be used to make a prediction. 

We saw an example of such a predictive 

conditional in (1) and (2): in the consequent, it is 

mentioned what would happen (The Illogician 

becoming a success) given the event described 

in the antecedent takes place (the articles being 

well written).

A completely different way of using conditionals 

is illustrated in sentence (3) – an example taken 

from (Austin 1970, 212). What seems to be the 

case in these often called ‘biscuit conditionals’ is 

that the antecedent is used to make a comment 

on the speech act performed in the consequent, 

in the case of (3) the offering of biscuits.

(3) There are biscuits on the sideboard if you 

want them.

While predictive and biscuit conditionals are just 

two instances of the many social functions a 

conditional can fulfil, they illustrate an 

important way in which these functions can 

diverge. Whereas predictive conditionals such 

as (1) imply a clear causal or temporal 
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connection between their antecedent and 

consequent, biscuit conditionals such as (3) do 

not – the biscuits are on the sideboard, whether 

you want them or not. Let us call this, following 

(Reuneker 2022), a difference in their 

connectedness.

So, what then would be the prediction regarding 

clause order preference based on this 

‘connectedness’ feature conditionals may or may 

not possess? When there is a strong connection 

present between the clauses of a conditional, it 

is conceivable that this connection incites a 

desire to place the clauses in a specific order. 

Take predictive conditionals: since the event 

described in the antecedent precedes the event 

of the consequent in a temporal and causal way, 

the most natural thing to do as a speaker seems 

to be to order the sentential clauses 

correspondingly. In fact, research shows that a 

mismatch between the temporal and clause 

order of a conditional often results in a 

response time penalty for listeners (Evans and 

Newstead 1977).

Conversely, when a conditional lacks 

connectedness, a preference for one specific 

clause order becomes much less obvious, if not 

completely absent. We saw biscuit conditionals 

as an example of non-connected conditionals: 

the antecedent merely comments on what is 

being said in the consequent. One can imagine 

how it would not matter much where or when 

this commenting takes place. For instance, (4) 

and (5) seem equally natural:

(4) If you’re thirsty, there is beer in the fridge.

(5) There is beer in the fridge, if you’re thirsty.

Thus, according to the hypothesis described 

above, conditionals high in connectedness 

receive a clear preference for one of the clause 

orders – the canonical in the case of predictive 

conditionals – while those low in connectedness 

do not.

GIVEN AND NEW

Connectedness is, however, only one possible 

factor influencing our clause order preferences. 

A very different one discussed in the literature 

looks at the information structure of the 

discourse in which the conditional is uttered, 

and more specifically at the so-called given-new 

principle. According to this principle, we prefer a 

sentence to first present information that is 

given in or inferable from the context, if it 

includes any. Only after this would we like the 

sentence to introduce information that is 

completely new. For example, if we are talking 

about how I struggled for the exam of Modal 

Logic, and I would like to say to you that 1) I 

almost failed the exam but that 2) Mary easily 

passed, the preferred thing for me to do is to 

utter those two propositions in that order, not 

the other way around. The given-new principle 

has been very successful in explaining how 

discourses are structured and has received a lot 

of empirical support (see e.g. Clark and Haviland 

1977; Haviland and Clark 1974).

It is hopefully easy to see how this principle can 

be applied to the topic of discussion. If a 

conditional is uttered in a discourse and the 

information in the antecedent relates much 

more directly to what has been said before than 

the information in the consequent, the given-

new principle makes the prediction that we 

would prefer the canonical order. If the roles are 

reversed and the consequent, not the 

antecedent, contains the information that 
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connects the conditional to the previous 

context, we would expect to observe a stronger 

preference for the non-canonical order.

Of course, there are many more factors one 

could think of that possibly influence our 

preferences for conditional clause ordering. For 

instance, the order seems to depend not only on 

the relative amount of words present in the 

antecedent or the consequent (see e.g. Diessel 

2005; Ford and Thompson 1986), but also on the 

mode (spoken vs written) in which the 

conditional appears (Reuneker 2020).

AN EXPERIMENTAL INVESTIGATION

In an experimental study I carried out with Lotte 

Hogeweg (Radboud University), we put both the 

connectedness and the given-new hypothesis to 

the test (Van der Leer and Hogeweg 2024). We 

presented Dutch predictive and biscuit 

conditionals embedded in a small context to 

native speakers, asking them to indicate their 

preference for clause order on a slider. 

Interestingly, we found confirmation for both 

hypotheses. Even more interestingly though, we 

also found a general preference for the 

canonical order across all conditions. Since the 

non-canonical order does occur in natural 

language, it is likely that there are factors next 

to connectedness and information structure 

that language users take into account when 

deciding on a preference for clause ordering.
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WHICH (IL)LOGICIAN ARE 
YOU?
HISTORY IS FULL OF BRILLIANT (AND BAFFLING) THINKERS. WHICH 
LEGENDARY (IL)LOGICIAN MATCHES YOUR MIND? 
TAKE THE QUIZ TO FIND OUT!
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REGULARITY PROPERTIES OF 
THE REALS AND THE AXIOM OF 
YIPU LI | PHILOSOPHY, MATHEMATICS
In this article, we aim to give an introduction to 

the set theoretic study of relation between 

regularity properties of the reals and the Axiom 

of Choice. Broadly conceived, regularity 

properties are desirable properties of set of real 

that appear in various different fields in 

mathematics. Among them, we are going to 

sketch Lebesgue Measurability (LM) and the 

Ramsey Property (RP). Diverse and seemingly 

unrelated they are, it turns out that they share a 

surprisingly similar pattern. We are going to 

show that with Axiom of Choice, we can show 

the existence of sets that break LM and RP 

respectively. 

Moreover, due to a celebrated result by Robert 

M. Solovay (Solovay, 1970), using the method of 

forcing, we are able to show that the full Axiom 

of Choice is necessary to break these regularity 

properties. The negative result was proved by 

constructing a model where all usual of 

Zermelo–Fraenkel axioms hold and Axiom of 

Choice fails, yet ALL sets of reals have LM and 

RP.

THE AXIOM OF CHOICE

The Axiom of Choice states:

Axiom of Choice: For any family ᵚ� of 
pairwise disjoint nonempty sets, there exists 
a choice function ᵛ� such that ᵛ�(ᵚ�) ∈ ᵚ�.

Russell famously gave an analogy to help 

understand the axiom (Math Stack Exchange 

contributors 2017). Say a millionare owns 

infinitely many pairs of shoes: ᵛ�ᵜ�ᵜ�ᵛ�ᵜ�ᵜ�, ᵜ� ∈ ᵚ�. 
Then there is always a way to choose one shoe 

out of each pair: you may choose the left shoe 

out of each pair, since the left shoe and the right 

one are different. The function is described by 

ᵛ�ᵜ�ᵜ�ᵛ�ᵜ�ᵜ� ↦ the only element s in Si s.t. s is the 

left one. The Axiom of Choice is not involved 

here.

However, the case for socks, ᵛ�ᵜ�ᵛ�ᵜ�ᵜ�ᵜ�, ᵜ� ∈ ᵚ�, is 

different. It is conceivable that the socks for left 

and right feet are indistinguishable, so there is 

no specific rule you can apply to choose a sock 

out of each pair. This illustrates where the Axiom 

of Choice comes into play. The Axiom asserts 

that nevertheless, there is a function that 

chooses from each pair: there is f s.t. f(Socksi) ∈ 

Socksi. 

REGULARITY PROPERTIES

LEBESGUE MEASURABILITY LM

Lebesgue measurability is one of the most 

crucial concept in analysis and probability 

theory. Rather than giving a detailed account of 

the theory, we are satisfied with informally 

saying that a set ᵛ� ⊆ ℝ is Lebesgue measurable 

means that it is regular in the sense that the 

result of measuring its size from the outside is 

equal to measuring its size from the inside (The 

outer measure of X is equal to its inner 

measure). In this sense, a LM set cannot be too 
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chaotic.

In 1905, with the help of Axiom of Choice, 

Giuseppe Vitali (Vitali, 1905) showed that there 

is a set that is not LM. Such sets are now known 

as the Vitali sets. 

RAMSEY PROPERTY RP

In combinatorial, the infinite Ramsey theorem 

states that any infinite binary graph contains an 

infinite homogeneous set, a set whose elements 

are either pairwise connected or pairwise 

disconnected. Indeed, the theorem is true for 

any ᵜ�-ary graphs, where edges connect ᵜ� 

elements instead of 2.

Thinking beyond the finite case, we can ask 

whether the similar strutural pattern emerges 

for graphs with infinite aried edges. For a set ᵛ�, 

let [ᵛ�]ω denote the set of all subsets of ᵛ� of size 
ω.

Definition: Let ℛ ⊆ [ℕ]ω be a set of infinite 

subsets of ℕ. ℛ is said to have the Ramsey 

Property if there exists an infinite homogeneous 

set ᵚ� ⊆ ℕ, i.e. either [ᵚ�]ω ⊆ ℛ or [ᵚ�]ω ∩ ℛ = 
∅.

A set ℛ ⊆ [ℕ]ω  is thus conceived as the infinite 

aried edges of a infinite graph on underlying set 

ℕ, and is said to have RP if there is a subgraph 

that is totally connected or totally disconnected.

The property does not seem outright to be a 

property of sets of real numbers, but rather a 

property of subsets of [ℕ]ω. However, from a set 

theoretic point of view, [ℕ]ω and ℝ are of course 

equinumerous and there is a way to view [ℕ]ω 

as sharing similar properties as the real line ℝ. 

So for now we indulge ourselves in calling RP a 

regular property of the set of reals.

And you guessed it, as the Axiom of Choice 

comes into play, we can show the existence of a 

set failing RP.

Proposition (AC): There exists a set without 
the Ramsey Property.

Here is the idea of the proof. We consider the 

equivalence relation ≡ᵛ�ᵜ�ᵜ� on [ℕ]ω by ᵛ�≡ᵛ�ᵜ�ᵜ�ᵛ� iff

 their symmetric difference is finite.

By the Axiom of Choice, for each equivalent 

class of the relation we can pick a 

represantative. Consider the function f that 

takes an equivalent class [X] to an element in it, 

f([X]) ∈ [X]. Now we consider the following set ᵊ� 
⊆ [ℕ]ω: 

We invite the readers to check that the set ᵊ� 

cannot have RP, basically because the property |

XΔf([X])| is even can be made to fail by altering X 

finitely, but which equivalence class X belongs 

to does not change so easily. 

THE SOLOVAY MODEL AND FULL 

REGULARITY

In our above discussion, the standard story is 

that there is a desired regularity property which 

we wish it to be true for all sets of the reals, yet 

the Axiom of Choice comes into play and ruins 

our day. 

Hence it is natural to ask whether Axiom of 

Choice is necessary for the existence of these 

irregular sets. Is it possible to prove the failure 

of LM and RP on some sets without using the 

Axiom? In 1970, Solovay answered the question 
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negatively for LM and later Mathias (Mathias, 

1977) showed that Solovay's argument works 

for RP too.

Solovay's theorem states that assuming that 

ZFC, the Zermelo–Fraenkel Axioms with Choice 

is consistent with some large cardinal 

assumption, then

Theorem (Solovay–Mathias). It is 
consistent with ZF that all sets of reals are 
Lebesgue measurable and have the Ramsey 
Property.

Let's forget about the part of the assumption 

that mentions large cardinal assumption, which 

is not a key point for our topic. We have to 

assume the consistency of ZFC basically because 

by Gödel's second incompleteness theorem, we 

can never prove that ZFC is consistent.

The method with which Solovay established the 

result was forcing, allowing one to start from a 

model of set theory and construct a new one. By 

starting from a model of ZFC and some large 

cardinal assumption, Solovay constructed a new 

model with a submodel where AC fails, yet all 

sets have LM and RP. This submodel was known 

as the Solovay model.

Perhaps more surprisingly, in the Solovay model 

the principle of Dependent Choice, a marginally 

weaker version of the Axiom of choice holds. 

This fact indicates that that existence of 

pathological sets assumes truly the full power of 

AC. This perhaps serves as an argument against 

full AC, depending on our philosophical view.

Moreover, the story for LM and RP is happening 

again and again. There are other regularity 

properties discussed in various field of 

mathematics: perfect set property in set theory; 

the property of Baire in topology and etcetera. 

Under AC, the aspiring regularity property of 

sets of the reals does not hold on all sets of the 

reals. On the other hand, AC is necessary for the 

existence of such pathological sets, as all these 

regular properties hold for all sets of the reals in 

the Solovay model.

Wrapping things up, in this article we peaked 

into an 'ideal world' where regularity prevails on 

the realm of reals, and where the Axiom of 

Choice does not distort things and produce 

chaotic objects that does not have the notion of 

size, does not have a homogeneous part, 

etcetera.

BIBLIOGRAPHY

Jech, Thomas. 2000. Set Theory: The Third 
Millennium Edition, Revised and Expanded. 

Springer Berlin, Heidelberg. https://doi.org/

https://doi.org/10.1007/3-540-44761-X.

Mathias, A. R. D. 1977. “Happy Families.” Annals 
of Mathematical Logic 12 (1): 59. https://

doi.org/10.1016/0003-4843(77)90006-7.

Math Stack Exchange contributors. 2017. 

“Russell’s Shoes and Socks Analogy.” 2017. 

https://math.stackexchange.com/questions/

2435303/russells-shoes-and-socks.

Solovay, Robert M. 1970. “A Model of Set-Theory 

in Which Every Set of Reals Is Lebesgue 

Measurable.” Annals of Mathematics 92 (1): 

1–56. http://www.jstor.org/stable/1970696.

Vitali, Giuseppe. 1905. “Sul Problema Della 

Misura Dei Gruppi Di Punti Di Una Retta.” 

Giornale Di Matematiche Di Battaglini 
11:51–61.



FALL 2025

27

THE LOGICO-EMPIRICAL 
FOUNDATIONS OF MEDIEVAL 
WITCHCRAFT ASCERTAINMENT: 
A PYTHONIAN ANALYSIS
THIAGO COCCO ROQUE | PHILOSOPHY
This paper examines the application of proto-

scientific methodology in the well-documented 

medieval inquiry portrayed in Monty Python 
and the Holy Grail, specifically the “She’s a 

Witch!” scene. At the core of the tribunal’s 

reasoning lies the Duck-Weight Equivalence 

Principle (DWEP), which posits that any 

individual whose mass precisely matches that of 

an avian specimen (specifically, Anas 
platyrhynchos) must, by ancient epistemic law, 

consist of the same material as ducks. Since 

ducks float and wood floats, the DWEP formally 

asserts that such individuals are composed of 

wood, and hence, by transitive ontological 

inference, must be witches. This leads directly to 

the Lemma of Buoyant Malfeasance, though 

objections persist among anti-floatation 

theorists who deny the ontological reality of 

ducks.

Let ℍ denote the category of peasants, ᵓ� the 

space of floating waterfowl (modulo plumage), 

and μ : ℍ ⊔ ᵓ� → ᵑ� a mass-functor valued in 

the Medieval Reals ᵑ� (cf.  the Holy Manual of 

Weighing Things). We define the Duck-Weight 
Equivalence Principle (DWEP) as:

where ∼ϵ denotes approximate equivalence 

under the canonical Feather-Norm topology, 

and ᵛ� : ℍ → ᵓ� is the witch-indicator functor 

taking values in the Boolean topos ᵓ� = {⊤, ⊥}. 

The duck is assumed to be ideal, frictionless, 

and morally neutral.

From DWEP we derive the Compositional 
Parity Lemma (CPL):
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where ⊗ denotes the mob-conjunction operator 

(see The Standard Model of Angry Peasants), 

and ᵚ�ᵜ�ᵜ�ᵜ�ᵜ�(ᵜ�) is defined iff ᵜ� is subjected to 

ℱire, the folklore ignition functor. Attempts to 

formally invert ⊗ remain obstructed by the 

Peasant Uncertainty Principle, which states that 

no angry mob can simultaneously know what it 

wants and why.

The weighing procedure is implemented via a 

symmetric seesaw morphism

constrained by the Peasant Uncertainty 
Principle:

Experimental results yield:

By the Witch Affirmation Theorem (WAT):

The proof of WAT is left as an exercise to the 
reader.

This result consolidates DWEP as a foundational 

principle in the broader theory of medieval 

verificationism. While further research is 

required to determine whether other small 

animals (e.g., badgers, newts) yield equivalent 

detection frameworks, the duck-based criterion 

remains the most parsimonious known method. 

Applications to legal theory, theology, and 

buoyancy studies are immediate and far-

reaching.
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MATHEMATICAL STRUCTURES IN 
PROGRAMMING LANGUAGES
STEFANO VOLPE | COMPUTATION, MATHEMATICS
If you enjoyed the Mathematical Structures in 
Logic course from last semester, you are going 

to love Nick’s rebranding for the new year: 

Mathematical Structures in Programming 
Languages! Alright, you got me, I haven’t 

managed to convince Nick yet. Still, don’t you 

find sticking exclusively to logics kind of 

limiting? There are so many more formal 

languages out there. What do their semantics 

look like? What kind of dualities between those 

shall emerge? Here, let’s stick to a very simple 

programming language, Hutton’s razor, defined 

by the following grammar.

Observe that specifying a grammar is akin to 

presenting a signature Σ (in the sense of first 

order logic, and of universal algebra): we are 

stating that ⋆ represents an ℕ-indexed family of 

0-ary operators, i.e.  constants (ᵚ� does not 

appear next to it), and that ⊕ is a binary 

operator. We can think of Σ as a “syntax” 
functor mapping each possible choice of a 

domain (in first order logic, or carrier in 

universal algebra) to the type of “ingredients” 

needed to construct a program using our 

grammar.

The above can be read as “You can construct 

programs by either specifying a natural number 

(and using ⋆) or by specifying two programs 

(and combining them with ⊕)”.

DENOTATIONAL AND OPERATIONAL 

SEMANTICS
A logician would probably conclude that the 

semantics of this language should be given by a 

function [⋅] : ᵚ� → ℕ like the following.

As this function is expressing what object each 

program is meant to denote, we call this kind of 

semantics denotational. Let’s spell out the 

mental process here: a domain, ℕ, was chosen, 

and our semantics have been specified as a 

recursively defined function from our grammar 

to said domain. Equivalently, this map Σ(ᵛ�) → ᵛ� 

is an algebra for the signature mentioned above 

(in the universal algebra sense, or term-level 

semantics for our first order theory): we fixed a 

carrier, ℕ, an ℕ-indexed family of constants, 

which are specified by the base case, and a 

binary operator, which is the natural numbers 

sum operator, as given by the inductive case. 

Visually, evaluating such a structurally recursive 

function (algebra) looks like folding the input in 

on itself until we obtain the result. So 

denotational semantics are algebras for 
the syntax functor. We use these algebras to 

know *how* to fold into a single value from our 
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semantic domain. So, much like logics, 

programming languages also have algebraic 

semantics! The operation of folding according to 

our algebra is itself a computable function 

translating programs written in a high level 

language (the object language given by our 

syntax) into a low level language (the 

metalanguage). Computer scientists call such 

translators compilers.

Believe it or not, programming languages can 

be so tricky that coming up with this kind of nice 

compositional semantics is, to date, still quite 

difficult, and requires learning hard maths. To 

avoid doing so, computer scientists come up 

with a proof system instead, and lazily defer the 

semantics problem to derivability in such a 

system. This is the same approach as proof-

theoretic semantics, which can save you from 

learning hard maths, as well. In the case of our 

programming language, the judgements of the 

proof system will be pairs whose left member 

will be a program ᵜ�. On the right of the arrow, 

the second element will either be a natural 

number ᵜ� (indicating that ᵜ� cannot be simplified 

any further, and that its result is ᵜ�), or a second 

program ᵜ� (meaning that ᵜ� reduces to ᵜ� after 

one step of computation). In each rule, we use ᵜ�, 
ᵜ�, ᵜ� as program variables, and ᵜ�, ᵜ� as natural 

number variables.

             t ⇝ n  u ⇝ m

------------ ------------

   ⋆n ⇝ n    t⊕u ⇝ ⋆(n+m)

    t ⇝ u        t ⇝ u

------------  -----------

  t⊕v ⇝ u⊕v    v⊕t ⇝ v⊕u

The binary relation  ⇝  ⊆ ᵚ� × (ℕ ⊎ ᵚ�) of all 

pairs derivable in the proof system describes 

what kind of operations a machine can perform 

to manipulate our program, so we refer to these 

semantics as operational. In fact, ⇝ can be 

represented as the function  ⇝ [⋅] : ᵚ� → ℕ ⊎ 
ᵊ�ᵛ�ᵜ�ᵜ�ᵚ� mapping irreducible programs to their 

result, and reducible programs to the collection 

of possible immediately successive execution 

steps. To us,

is the “behaviour” functor of our programming 

language. That is, it describes how programs 

behave at runtime: they either return a result or 

reduce non-deterministically, but still with finite 

branching. We called functions of type Σᵛ� → ᵛ� 

for some ᵛ� “algebras” over syntax functor Σ. 

Hence, it is only natural to call all functions that, 

like  ⇝ [⋅], have type ᵛ� → ᵛ�(ᵛ�) for some ᵛ� 

coalgebras over behaviour functor ᵛ�. Visually, 

any of these coalgebras tells us how to unfold 

an initial program into a trace of possible 

execution paths. Hence, operational 
semantics are coalgebras for the 
behaviour functor. We use them to know 

“how” to unfold a program repeatedly until 

(hopefully) we terminate and obtain the 

collection of all its possible output values. If we 

call ᵛ� the operation of repeatedly unfolding 

according to the  ⇝ [⋅] coalgebra, we have, for 

example:

This is a trace, or execution tree, for our 

program (think of the syntax tree of {{{ᵾ�}}}). 
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Because of how ᵛ� is defined, its internal nodes 

are not labelled. In addition, duplicated 

branches are not allowed, so this trace is 

conflating the two possible reductions chains. At 

any rate, this time around, the carrier of our 

coalgebras is not semantical (the denotational 

domain), but rather syntactical: it is the 

language itself! Unfolding programs from such a 

language into their traces using the specified 

coalgebra is akin to a procedure simulating their 

execution step-by-step. Computer scientists call 

such programs interpreters. The duality 

between denotational and operational 

semantics is now apparent. A gentler exposition 

on this is given by (Hutton 2023).

FULL ABSTRACTION
Syntax, algebraic semantics, and coalgebraic 

semantics: our triptych is now complete. To 

relate [⋅] and  ⇝ [⋅], we introduce a property 

known as full abstraction. A function defined 

using our language as domain is fully abstract if 

it maps two programs to the same object just in 

case such programs are unfolded to the same 

traces by our operational semantics. Ideally, we 

would want folding using our denotational 

semantics to be fully abstract. This would 

guarantee our denotational semantics are 

abstract enough to equate two programs with 

the same traces, but still informative enough to 

map programs with different traces to different 

objects. As a simple exercise, can you prove that 

full abstraction does not hold between [⋅] and  
⇝ [⋅]?

DISTRIBUTIVITY LAWS
Ever been worried of coming up with 

mismatching algebraic and topological 

semantics for your logic, and then wasting time 

trying to prove a representation theorem that 

does not hold? With programming languages, 

distributivity laws (Paviotti and Wu 2023) can 

help us mitigate the analogous problem for 

denotational and operational semantics, while 

providing a satisfying bird’s-eye view on our 

duality. These laws describe how our syntax 

functor Σ distributes over the behaviour functor 

ᵛ�. They are parametric in an arbitrary type ᵛ�, 

and take the form of a family of functions

specifying how our syntax interacts with our 

behaviour. In particular, by defining how Σ can 

be “pushed past” ᵛ�, these functions are 

witnessing how behaviour behaves 

compositionally with reference to our syntax: 

behaviour for a program can be obtained 

composing the ones of the immediate 

subprograms. Note that our language ᵚ�, being 

inductively defined using Σ, is the smallest 

object closed under it, i.e.  the least fixpoint μΣ. 

So what ᵛ�-coalgebra of type μΣ → ᵛ�(μΣ) shall 

act as our operational semantics? Because the 

domain of the desired function is our language, 

the result is, unsurprisingly, a fold. Specifically, 

the fold using the following Σ-algebra.

What is going on here? Using a fold over a Σ-

algebra means we are trying to define our 

operational semantics recursively on the syntax 

of the program. The recursive clauses of this 

definition will be defined componing two 

operations. First, we use distributivity to 

compose behaviours for the immediate 

subterms into a single behaviour for a 

“standalone” object storing such subterms. 
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Now, ᵚ�ᵜ� : Σ(μΣ) → μΣ is a constructor for our 

inductively defined language. Under normal 

conditions, it would take the standalone object 

mentioned above as its input and produce a 

program. Our second and last step is lifting ᵚ�ᵜ� 

using the action on maps of functor ᵛ� so we can 

have this construction happen at the behaviour 

level. The algebra in now complete. Isn’t it funny 

how operational semantics are meant to be 

consumed by an unfolding, and we are defining 

ours via folding? Anyway, time to operate the 

dual construction. The type of traces, being 

defined coinductively using ᵛ�, is the biggest 

object closed under it, i.e.  the greatest fixpoint 
νᵛ�. Our denotational semantics are the unfold 

using the following ᵛ�-coalgebra, where ᵚ�ᵜ�ᵜ� : 
νᵛ� → ᵛ�(νᵛ�) is a destructor observing the very 

beginning of our trace.

So coming up with a distributivity law is always 

enough to get both semantics for free! Of 

course, folding using these denotational 

semantics (or any other algebra, really) is 

compositional (since all folds are 

compositional by construction). Similarly, 

unfolding using these operational semantics is 

fully abstract with reference to them (trivially, 

by definition of full abstraction). The punchline 

here is that it can be shown that folding a 

program using these denotational semantics 

and unfolding it using these operational 

semantics are actually the same function, that 

deserves the name of universal semantics. So 

folding using the denotational semantics, a.k.a. 

our universal semantics, is always fully abstract, 

while still being compositional!
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CONSTRUCTING COLIMITS IN A 
TOPOS USING ELEMENTARY 
METHODS
ZHAORUI HU | MATHEMATICS
An elementary topos is a category with finite 

limits, exponentials, and a subobject classifier 

ᵜ� : ᵾ� → Ω. We don’t know from the definition 

that a topos has colimits. Surely we have 

theorems1 ensuring that a topos at least has 

finite colimits, but this is far from intuitive. We 

might ask for a more straightforward 

construction of certain colimits in a topos; we 

want more explicit expressions using limits, 

exponentials, and the subobject classifier.

Thanks to online posts by Todd Trimble2, we 

have an intuitive way of constructing the initial 

object and coproducts. In the following, we 

focus on the construction of the initial object as 

a representative example of a colimit in a topos.

As already suggested in the proof of the 

Tripleability Theorem (which is used to prove 

that a topos has finite colimits), colimits such as 

the initial object can be realized in certain 

equalizers. Roughly speaking, taking 

exponentials allows us to get “larger” objects, 

and taking equalizers allows us to get “smaller” 

objects. Therefore, working with set-theoretic 

intuition, we might start by taking a certain 

equalizer, hoping the result serves as the initial 

object. However, this approach is too difficult to 

carry out: even though we have the equalizer 

and hope it is the initial object, where do we get 

the unique map from this equalizer to any 

object in the topos?

Therefore, we need a more systematic approach 

to solve this problem. The idea is to construct a 

so-called internal intersection operation, and 

then take the “intersection of all subsets” to get 

the desired initial object. We will work with set-

theoretic intuition, and, for example, we 

imagine subobjects as subsets.

More precisely, for any object ᵛ�, we construct a 

morphism ᵚ�ᵚ�ᵛ� ⟶⋂ ᵚ�ᵛ�. Here, ᵚ�ᵛ� is a 

shorthand for Ωᵛ�, and similarly ᵚ�ᵚ�ᵛ� is a 

shorthand for ΩΩˣ. Intuitively, we imagine Ω as 

an object of truth values, and ᵚ�ᵛ� is the 

collection of subsets of ᵛ�, and ᵚ�ᵚ�ᵛ� is the 

collection of all sets of subsets of ᵛ�, and ⋂ : 
ᵚ�ᵚ�ᵛ� → ᵚ�ᵛ� is like, given any set of subsets of ᵛ�, 

we take the intersection of them, and the 

intersection is a subset of ᵛ�. Once we have such 

a morphism, we will be able to take the 

intersection of all subsets of ᵛ�, then hopefully 

this intersection will act as the initial object.

So the issue is how we construct the morphism 

⋂ : ᵚ�ᵚ�ᵛ� → ᵚ�ᵛ� with our bare hands. To 

proceed, we first need to develop some logical 

symbols within the topos. Why do we need 

logical symbols? Because they help us 
1. Beck’s Crude Tripleability Theorem.
2. See the references: the first one gives the construction of basic logical symbols, and the second one includes the 
constructions of the initial object and coproducts (Trimble 2008; authors 2025).
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understand what we are constructing, and they 

indicate the properties that certain 

constructions have. Indeed, the only logical 

symbols we need are ∧, ⇒, and ∀ᵚ�. Luckily, 

unlike other logical symbols such as ∨, these 

three logical symbols are easy to construct in a 

topos, meaning that within a few steps of 

construction using finite limits, exponentials 

and subobject classifier, we will be able to have 

them.

The details of constructing them are irrelevant 

here. We only summarize the important 

properties they have. Fix an object ᵛ�. When 

speaking of subobjects of ᵛ�, we imagine they 

are subsets of ᵛ�. We will use the letters ᵚ�, ᵚ�, 

and ᵚ� for subobjects of ᵛ�.

• ∧, or ∩: For subobjects ᵚ� and ᵚ�, the 

intersection of ᵚ� and ᵚ� is written as ᵚ� ∩ ᵚ�. 

We have that if ᵚ� ≤ ᵚ� and ᵚ� ≤ ᵚ�, then ᵚ� ≤ 
ᵚ� ∩ ᵚ�. As this property suggests, we know 

that ᵚ� ∩ ᵚ� can be gotten by taking pullbacks.

• ⇒: We have the implication ᵚ� ⇒ ᵚ� for any 

ᵚ�, ᵚ�. Then for any ᵚ�, we have that ᵚ� ∩ ᵚ� ≤ 
ᵚ� if and only if ᵚ� ≤ ᵚ� ⇒ ᵚ�.

• ∀ᵚ�:For another object ᵚ�, we consider the 

product ᵛ� × ᵚ�. We imagine subobjects of ᵛ� × 
ᵚ� as subsets of the product ᵛ� × ᵚ�. So given 

any such subobject ᵛ� ⊆ ᵛ� × ᵚ�, intuitively, we 

can collect those ᵝ� ∈ ᵛ� such that for every ᵛ� 
∈ ᵚ�, we have (ᵝ�, ᵛ�) ∈ ᵛ�. We write the 

resulting subobject of ᵛ� as ∀ᵚ�.ᵛ�. The property 

we expect from ∀ᵚ� is the following: for any 

subobject ᵚ� of ᵛ� and any subobject ᵛ� of ᵛ� × 
ᵚ�, we have ᵚ� × ᵚ� ≤ ᵛ� if and only if ᵚ� ≤ ∀ᵚ�.ᵛ�.

We still need some internal set-theoretic notions 

before constructing the map ⋂ : ᵚ�ᵚ�ᵛ� → ᵚ�ᵛ�. 

Indeed, we can reason about the ∈-relation. For 

any object ᵛ�, ∈ᵛ� is a subobject of ᵛ� × ᵚ�ᵛ�, and 

again, intuitively, it collects the pairs (ᵝ�, ᵚ�), 
where ᵝ� is an element of ᵛ�, ᵚ� is a subset of ᵛ�, 

and ᵝ� ∈ ᵚ�.

Now, we have all the ingredients for 

constructing the map ⋂ : ᵚ�ᵚ�ᵛ� → ᵚ�ᵛ�. 

Intuitively, any element of ᵚ�ᵚ�ᵛ� is a set of 

subsets of ᵛ�; we write it as ᵚ�. Then what is the 

intersection ⋂ᵚ�? It is the set of all ᵝ� ∈ ᵛ� 

satisfying the property that for any subset ᵚ� of 

ᵛ�, if ᵚ� is in ᵚ�, then ᵝ� is in ᵚ�. Writing this 

compactly, it is characterized by ∀ᵚ� ∈ ᵚ�ᵛ�.(ᵚ� ∈ 
ᵚ� ⇒ ᵝ� ∈ ᵚ�). So we imagine that this formula 

gives us a subset of ᵚ�ᵚ�ᵛ� × ᵛ�, which are pairs 

(ᵚ�, ᵝ�) that satisfy the property ∀ᵚ� ∈ ᵚ�ᵛ�.(ᵚ� ∈ ᵚ� 
⇒ ᵝ� ∈ ᵚ�). Finally, we know that a subobject of 

ᵚ�ᵚ�ᵛ� × ᵛ� corresponds to a map ᵚ�ᵚ�ᵛ� → Ωᵛ�, i.e., 

a map ᵚ�ᵚ�ᵛ� → ᵚ�ᵛ�, which is the desired internal 

intersection map.

Although we have omitted most technical 

details, let us now complete the argument. 

From some easy observations, we can show that 

if ᵚ� and ᵚ� are subobjects of ᵚ�ᵛ�, and if ᵚ� ≤ ᵚ�, 

then we have ⋂ᵚ� ≤ ⋂ᵚ�.

One more important property, which, to my 

knowledge, is not mentioned in the posts of 

Todd, is that the composition ᵚ�ᵛ� ⟶⋅ ᵚ�ᵚ�ᵛ� ⟶⋂ 
ᵚ�ᵛ� is the same as the identity. Here, the map 

{⋅} : ᵚ�ᵛ� → ᵚ�ᵚ�ᵛ� is like given any element ᵚ� in 

ᵚ�ᵛ�, we get an element {ᵚ�} in ᵚ�ᵚ�ᵛ�. The intuition 

is clear: ⋂{ᵚ�} = ᵚ�.

Finally, with all the observations above, we know 

that:

• For any ᵛ�, write ᵾ�X to be the intersection of “all 

subsets of ᵛ�”. We can show that ᵾ�ᵛ� is the 

smallest subobject of ᵛ�. Then if ᵚ� is a 

subobject of ᵛ�, then ᵾ�ᵚ� is isomorphic to ᵾ�ᵛ�.
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• Now, for any object ᵛ�, we know there is always 

a monomorphism ᵾ� → ᵚ�ᵛ�, which picks the 

object ᵛ� as a subobject of itself. Then we know 

ᵾ�1 is isomorphic to ᵾ�ᵚ�ᵛ�. We also know that ᵾ�ᵛ� 

is isomorphic to ᵾ�ᵚ�ᵛ�, since via the singleton 

map {⋅} : ᵛ� → ᵚ�ᵛ�, we know ᵛ� can be viewed 

as a subobject of ᵚ�ᵛ�. We thus get the map ᵾ�ᵾ� 
→ ᵛ�.

• To show that maps from ᵾ�1 to any ᵛ� is unique: 

take equalizer!

Thus, we have a concrete construction of the 

initial object. With the internal intersection, one 

can also construct coproducts concretely. Again, 

the idea is that we can always take exponentials 

to go “up”, and then take certain intersections, 

etc., to go “down.” However, how to construct 

coequalizers in this fashion is unclear to me at 

the moment, and I suspect it will not be as 

economical as in the case of finite coproducts.

In conclusion, I am satisfied to have found an 

intuitive and straightforward construction of the 

initial object in a topos. While the above 

discussion offers nothing essentially new to the 

subject, and may even be too limited when it 

comes to constructing more complicated 

structures, perhaps the point I want to make is 

this: although there are powerful theorems 

guaranteeing the existence of certain 

structures, it is sometimes enjoyable, and 

maybe even inspiring, to find a more direct 

construction, as we did here with the initial 

object.
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ENGINEERING SEXUAL 
ORIENTATION
EMMA BATISTONI | LOGIC AND BEYOND
Perhaps Lady Gaga was right - sexual 

orientation is not our choice: baby, we were 
born this way. This conception has, after all, 

done much for the mainstream acceptance of 

certain queer identities. But if we really were 

simply born this way, then ought we only to 

accept non-cis-heterosexual identities simply 

because those who identify as such, so to speak, 

just cannot help it? This seems undesirable, as it 

leaves open the possibility that there might be 

something inherently blameworthy about them; 

such a static conception of sexual orientation 

moreover does not seem to reflect the lived 

experiences of many individuals (Diamond 2022, 

83, 93).

In addition to that, and perhaps even more 

pressingly, just what is sexual orientation about 

to begin with? It is not obvious whether we are 

referring to sex, gender, or some combination of 

the two; it is also contentious what these terms 

really mean, and whether “sex” wasn’t already 

“gender” all along (Butler 2006, 9–10), in the 

sense that sex categories, which may be 

thought to be based on cold, hard biological 

facts, already bear, to a certain extent, the 

imprint of culturally contingent gender norms.

The “born this way” narrative is at the core of 

the so-called “folk” conception of sexual 

orientation, according to which sexual 

orientation is to be understood as an exclusive 

preference for a certain sex (but again, what is 

sex?), and takes priority over sexual preferences 

- colloquially, “types” - in the sense that types 

operate within someone’s sexual orientation. 

For instance, someone who is attracted to 

women and prefers as a general rule tall people 

will likely not be attracted to a tall man (Halwani 

2023, 4–5). This results in three sexual 

orientations: heterosexuality, homosexuality, 

and bisexuality.

In my article, I want to provide one main reason 

why the so-called “folk” conception of sexual 

orientation is defective and might need to be re-

engineered. Before we move on, however, I 

want to take as axiomatic the following facts: (i) 

that nobody is entitled to a right to sex, or even 

a right to be attractive, and (ii) that an 

individual’s (reasonable) sexual preferences are 

entirely legitimate and to be taken at face value, 

and the same goes for their self-identification. 

Any attempt to re-engineer the concept of 

sexual orientation will need to jostle between 

on the one hand spiralling into the incel rhetoric 

of entitlement to sex, because there is no 

conceivable way to endorse a right to sex and 

therefore redistribute desire compatibly with a 

more primitive commitment to basic human 

rights, and moral authoritarianism on the other, 

that seeks to dictate what people ought to like 

and identify as – I view this as incompatible with 

a commitment to basic autonomy (for a 

discussion on this topic, see Srinivasan 2021). In 

other words, any potential blame will not be 

located at the individual level, barring obviously 
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1. Here, she was referring in particular to the failed project of political lesbianism.
2. Halwani calls them “biologically male”, which I very strongly disagree with.
3. See Chapter 1 of Cull (2024) for a recent coincise overview of conceptual engineering, and Haslanger (2000) for a 
classical paper thatuses slightly different terminology.

problematic cases in which preferences are 

based on explicit objectionable beliefs - for 

instance, the case of someone justifying their 

racial sexual preference on explicit racist beliefs. 

As Andrea Long Chu put it, “nothing good 

comes of forcing desire to conform to political 

principle” (Chu 2018)1.

I focus on what I think is the main defect of the 

folk conception of sexual orientation: it is not at 

all clear what it is about. Consider a variation of 

the famous Ship of Theseus problem: if ♣ self-

identifies as lesbian and her partner ♠ starts 

identifying as a transgender man, and 

undergoes medical transition, at what point 

does ♣ stop being a lesbian, if ever? So is sexual 

orientation to be understood as a preference for 

sex, gender, or perhaps a combination of both, 

and what are sex and gender to begin with in 

this context?

Consider sex first: Halwani attempts to define it 

as the marks of one’s reproductive strategy 

(Halwani 2023, 3). Under this view, a man’s 

sexual preference for transgender (as in, 

assigned male at birth) women who retain their 

penises can be understood as 

“gynandromorphophilia” (Halwani 2023, 9), 

because these women2 have mixed sex 

markers, i.e.  both breasts and penises. Halwani 

is here making an implicit assumption: that 

breasts are invariably a marker of the “female” 

sex, and penises invariably of the “male” sex. I 

believe this assumption is unjustified, because 

of mainly two reasons. In the first place, 

Halwani’s assumption threatens to override the 

lived experiences of the many individuals onto 

whom the sex binary that he proposes does not 

neatly apply: what he is saying seems to imply 

that if a cisgender lesbian is in a relationship 

with a transgender woman, then she is not 

really a lesbian after all, and this is incompatible 

with our commitments. Moreover, Halwani 

seems to completely overlook the ways in which 

gender affirming hormonal therapies drastically 

changes the functioning of sexual organs even 

in absence of any surgical intervention. But 

what notion of sex can underlie the concept of 

sexual orientation, then? At most, and 

consistently with our commitments, I concede 

that we may be attracted to traits that are likely 

by-products of some combination of someone’s 

reproductive strategy, and anatomy, karyotype, 

and sustained hormonal profile, but this a far 

cry from Halwani’s proposal.

As for gender, consider a self-identified gay man 

who grounds his, so to speak, gayness, onto his 

sexual attraction to penises. Would he then be 

attracted to certain transgender women, and 

not to many transgender men? Bearing in mind 

that we do not want to tell people what they 

ought to be attracted to, nor to override their 

personal labels, I think this shows that gender 

cannot ground sexual orientation either, 

consistently with our commitments.

These brief remarks, I hoped, showed that the 

folk conception of sexual orientation is defective 

in, mainly, not being able to accurately reflect 

the experiences of many queer individuals, and 

that it is therefore a rather inadequate 

grounding for, at the very least, the expansion 

of civil rights. Should we then re-engineer our 
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concept of sexual orientation?3 I believe that 

these defects point to this.

Lastly, the discussion above may also make one 

wonder whether we need a concept of sexual 

orientation at all. As a concluding remark, I want 

to suggest that such an objection would be 

somewhat misguided, as I hold that some 

construct is valuable as an analytical tool that 

enables us to identify patterns in preference 

that may be socially and politically shaped (see 

Barn 2022).
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(IL)LOGICAL QUOTES
“F1? Is that with cars?”

“I won’t judge, I’m not Italian.”

*While editing a paper together* 
"Okay, I change the statement of the theorem and you 
change the proof." 
"Sounds good, what could possibly go wrong?"

“People’s opinions are clearly overrated.”

“But what if your phone dies, how will you get home?”
“I always know the way home from Science Park”

“I could never date him - he’s a platonist!”

"Haskell is only a gateway drug. Don't stop there. Go 
sniff some Agda and Idris now."

“Pi day is my second favourite holiday, after my 

OVERHEARD ANY 
(IL)LOGICAL QUOTES?

SEND THEM IN!
You can submit quotes on our 

website: resources.illc.uva.nl/

TheIllogician/calls
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CRYPTIC CLUES
Cryptic clues originated in early 20th century Britain as an evolution of regular crossword puzzles. 

These crosswords are called cryptic for the fact that the clues include some kind of wordplay or 

hidding meaning, and that the answer usually does not match the plain reading of the clue. This 

(often more difficult) variety of crosswords gained popularity in the UK and beyond, with cryptic 

crosswords appearing regularly in major newspapers like The Times and The Guardian.

In their modern format, cryptic clues generally include the following:

1.  A definition: Found at the beginning or end of the clue, the plain reading of this part by itself will 

describe the answer to the puzzle, just as a clue in a regular crossword. However, this description 

will often only match the answer in a broader, humorous, or more roundabout way and hence the 

definition itself is often not enough to solve the puzzle.

2.  Wordplay: The other part of the clue will form some sort of wordplay that, when solved, also 

yields the answer to the puzzle. The wordplay itself can usually itself be divided into wordplay 

indicator, words that hint at what kind of wordplay needs to be applied, and fodder, i.e. words on 

which the wordplay acts.

EXAMPLE

Single tutors accidentally fish in freshwater. (5)

Here, the wordplay part of the clue is single tutors accidentally. The first indicator, single, acts on the 

fodder, tutors, and tells us to take not the plural but the singular form of tutors, i.e. tutor. Secondly, 

accidentally is an anagram inidicator, telling us to rearrange the letters of tutor to find the answer. 

(Imagine the letters getting into an accident and being disordered as a result.) Doing so gives us 

trout, an answer that matches the definition part of the clue, fish in freshwater.

CLUES

In the following you find three logic themed cryptic clues. For hints and solutions visit 

resources.illc.uva.nl/TheIllogician/posts/2025-ii-solutions.
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