Logic List Mailing Archive

2nd Tsinghua Interdisciplinary Workshop on Logic, Language, and Meaning

10-12 Apr 2020
Beijing, China

Call for Papers: Second Tsinghua Interdisciplinary Workshop on Logic, 
Language, and Meaning: Monotonicity in Logic and Language

Description:

Monotonicity, in various forms, is a pervasive phenomenon in logic, 
linguistics, and related areas. In theoretical linguistics, monotonicity 
properties (and lattice-theoretic notions such as additivity), as semantic 
properties of intra-sentential environments, determine the syntactic 
distribution of a class of terms robustly attested across languages called 
Negative Polarity Items (NPIs, Ladusaw 1979), such as English any in (1), 
and is relevant to a large array of semantic phenomena such as the 
interpretation of donkey pronouns (Kanzanawa 1994, (2)), plural definites 
(Krifka 1996, (3)), plural morphemes and so on, and to the presence of 
pragmatic inferences such as scalar implicatures (Grice 1989), as 
illustrated by the interpretative difference of disjunction in (4) 
(Chierchia 2004) .

(1)    a.  *Somebody bought any cookies.
         b.   Nobody bought any cookies.
(2)    a.   Every farmer who owns a donkey beats it. (Universal interpretation of it)
         b.   No farmer who owns a donkey beats it. (Existential interpretation of it)
(3)    a.   Mary has read the files on her desk. (Universal interpretation of the files)
         b.   Mary has not read the files on her desk. (Existential interpretation of the files)
(4)    a.   If everything will go well, we?ll hire either Mary or Sue. (Exclusive interpretation of or)
         b.   If we hire either Mary or Sue, everything will go well.  (Inclusive interpretation of or)

In logic and mathematics, a function f between pre-ordered sets is 
monotone or increasing (antitone or decreasing) if x ? y implies f(x) ? 
f(y) (f(y) ? f(x)). Monotonicity guarantees the existence of fixed points 
(points x such that f(x)=x) and the well-formedness of inductive 
definitions, and logical languages with expressive means for talking about 
fixed points, such as first-order fixed point logic or the modal 
µ-calculus, is a growing area of study in logic and computer science. 
Also, monotonicity is closely tied to reasoning, in formal as well as 
natural languages. Corresponding to the semantic properties of 
monotonicity and antitonicity there is the syntactic property of (positive 
or negative) polarity. Monotonicity Reasoning, which involves replacement 
of predicates in syntactic contexts of given polarity, is a simple yet 
surprisingly powerful mode of inference. Starting with work of van Benthem 
and Sánchez-Valencia in the 1980s, the idea of Natural Logic, comprising 
algorithms for polarity marking and formal calculi for monotonicity 
reasoning, is an active research project (Icard and Moss 2014). Likewise, 
much of the current study of syllogistic reasoning (Moss 2015) formally 
exploits patterns of monotonicity.

Recent logical and linguistic work on monotonicity has also found its way 
into computation systems for natural language processing (e.g. systems for 
Recognizing Textual Entailment, MacCartney and Manning 2009), and 
cognitive models of human reasoning (Geurts 2003). The goal of our 
workshop is to bring together researchers working on monotonicity or 
related properties, from different fields and perspectives. Topics of the 
workshop may include (but are not limited to) the following:

   * linguistic phenomena sensitive to monotonicity and their analyses

   * different types of monotonicity (logical monotonicity, Strawson 
monotonicity and perceived monotonicity; Chemla, Homer and Rothschild 
2012)

   * monotonicity beyond quantificational determiners and negation 
(monotonicity of embedding verbs and modals, monotonicity in questions)

   * cognitive and computational aspects of monotonicity

   * representation of monotonicity in formal and natural languages

   * logics based on fixed points

   * formal calculi of monotonicity and related properties

   * Natural Logic: theory and applications

   * logics for syllogistic fragments

Program The first day of the workshop is devoted to two tutorials:

   1.  Jakub Szymanik (University of Amsterdam): Monotonicity in Logic

   2.  Gennaro Chierchia (Harvard University): Monotonicity in Language

The remaining two days consist of invited and contributed talks.

Invited Speakers:
Gennaro Chierchia (Harvard University)
Jo-wang Lin (Institute of Linguistics at Academia Sinica, Taiwan)
Floris Roelofsen (University of Amsterdam)
Jakub Szymanik (University of Amsterdam)

Publication:
Papers from the workshop will be published (after peer review) in the FoLLI LNCS series.

Instructions for submitting a paper:

Abstracts are not to exceed two pages of A4 or letter-sized paper, 
including data and references, preferably with 1? (2.54cm) margins on all 
sides, set in a font no smaller than 11 points. The abstract should have a 
clear title and should not identify the author(s). The abstract must be 
submitted electronically in PDF format, via 
EasyChair<https://easychair.org/conferences/?conf=tllm2020>.

Important Dates:
30 November, 2019: submission of 2-page abstracts
22 December, 2019: notification of acceptance
April 10-12, 2020: workshop

Program Committee:
Johan van Benthem  (Stanford University and Tsinghua University)
Dun Deng (Tsinghua University, co-chair)
Thomas Icard III (Stanford University)
Xuping Li (Zhejiang University)
Mingming Liu (Tsinghua University, co-chair)
Larry Moss (Indiana University)
Haihua Pan (The Chinese University of Hong Kong)
Stanley Peters (Stanford University)
Wei-tian Tsai (National Tsinghua University, Taiwan)
Yingying Wang (Hunan University)
Dag Westerståhl (Stockholm University and Tsinghua University, co-chair)

Local Organizing Committee:
Fenrong Liu (Tsinghua University, chair)
Xiaoan Wu (Tsinghua University)
Zhiqiang Sun (Tsinghua University)
--
[LOGIC] mailing list
http://www.dvmlg.de/mailingliste.html
Archive: http://www.illc.uva.nl/LogicList/

provided by a collaboration of the DVMLG, the Maths Departments in Bonn and Hamburg, and the ILLC at the Universiteit van Amsterdam