10-12 Aug 2019
Macau, China
Fifth Workshop on: Bridging the Gap between Human and Automated Reasoning an IJCAI-19 workshop (supported by IFIP TC12) Macau, China August, 2019 http://ratiolog.uni-koblenz.de/bridging2019 ================================================================= Reasoning is a core ability in human cognition. Its power lies in the ability to theorize about the environment, to make implicit knowledge explicit, to generalize given knowledge and to gain new insights. There are a lot of findings in cognitive science research which are based on experimental data about reasoning tasks, among others models for the Wason selection task or the suppression task discussed by Byrne and others. This research is supported also by brain researchers, who aim at localizing reasoning processes within the brain. Early work often used propositional logic as a normative framework. Any deviation from it has been considered an error. Central results like findings from the Wason selection task or the suppression task inspired a shift from propositional logic and the assumption of monotonicity in human reasoning towards other reasoning approaches. This includes but is not limited to models using probabilistic approaches, mental models, or non-monotonic logics. Considering cognitive theories for syllogistic reasoning show that none of the existing theories is close to the existing data. But some formally inspired cognitive complexity measures can predict human reasoning difficulty for instance in spatial relational reasoning. Automated deduction, on the other hand, is mainly focusing on the automated proof search in logical calculi. And indeed there is tremendous success during the last decades. Recently a coupling of the areas of cognitive science and automated reasoning is addressed in several approaches. For example there is increasing interest in modeling human reasoning within automated reasoning systems including modeling with answer set programming, deontic logic or abductive logic programming. There are also various approaches within AI research for commonsense reasoning and in the meantime there even exist benchmarks for commonsense reasoning, like the Winograd and the COPA challenge. A core goal of Bridging-the-gap-Workshops is to make results from psychology, cognitive science, and AI accessible to each other. The goal is to develop systems that can adapt themselves to an individuals' reasoning process and that such systems follow the principle of explainable AI to ensure trustfulness and to support the integration of results from other fields. We propose a human syllogistic reasoning challenge to predict future inferences of an individual reasoner based on some previous observations. Hence, participants can develop cognitive AI models (written in Python) that predict the next inference. These predictions are then evaluated in the CCobra framework (for more information see https://www.cognitive-computation.uni-freiburg.de/modelingchallenge). Despite a common research interest -- reasoning -- there are still several milestones necessary to foster a better inter-disciplinary research. First, to develop a better understanding of methods, techniques, and approaches applied in both research fields. Second, to have a synopsis of the relevant state-of-the-art in both research directions. Third, to combine methods and techniques from both fields and find synergies. E.g., techniques and methods from computational logic have never been directly applied to model adequately human reasoning. They have always been adapted and changed. Fourth, we need more and better experimental data that can be used as a benchmark system. Fifth, cognitive theories can benefit from a computational modeling. Hence, both fields -- human and automated reasoning -- can both contribute to these milestones and are in fact a conditio sine qua non. Achievements in both fields can inform the others. Deviations between fields can inspire to seek a new and profound understanding of the nature of reasoning. Additionally to predict human inferences is a major step that can help to foster the integration of digital companions and cognitive assistance systems into our everyday life. An important condition is that such systems can adapt themselves to an individual's reasoning process and that such systems follow the principle of explainable AI to ensure trustfulness and to support the integration of results from other fields. Symbolic approaches do provide an easier access to it. This is the fifth workshop in a series of successful Bridging the Gap Between Human and Automated Reasoning workshops. Topics of interest include, but are not limited to the following: - limits and differences between automated and human reasoning - psychology of deduction and common sense reasoning - logics modeling human reasoning - non-monotonic, defeasible, and classical reasoning - benchmark problems relevant in both fields - approaches to tackle benchmark problems like the Winograd Schema Challenge or the COPA challenge - predicting an individual reasoners response (see https://www.cognitive-computation.uni-freiburg.de/modelingchallenge) The workshop will be located at the 28th International Joint Conference on Artificial Intelligence (IJCAI 2019) at Macao, China. The Bridging workshop is supported by IFIP TC12. ======== IMPORTANT DATES ======== Full Paper submission deadline: 12th April, 2019 Notification: 10th May, 2019 Final submission: 10th June, 2019 Model submission for PRECORE challenge: 15th May, 2019 Workshop: 10th - 12th August, 2019 ======== SUBMISSION AND CONTRIBUTION FORMAT ======== This year's Bridging workshop will accept papers and submissions to the PRECORE challenge: Papers, including the description of work in progress, are welcome and should be formatted according to the Springer LNCS guidelines. The length should not exceed 15 pages. All papers must be submitted in PDF. Formatting instructions and the LNCS style files can be obtained at http://www.springer.de/comp/lncs/authors.htm. The EasyChair submission site is available at: https://easychair.org/conferences/?conf=bridging2019 The PRECORE challenge is based on CCOBRA (https: //www.cognitive-computation.uni-freiburg.de/modelingchallenge), a Python framework for the behavioral analysis of reasoning models. The framework does not pose restrictions with respect to formalisms as long as individual predictions to syllogistic problems can be generated. Final model submissions are due on May 15th, 11:59 UTC-12 as a zip-archive. Please describe your model on a conceptual level on two pages in the workshop template. Details on the submission of the zip-archive can be found at: https://www.cognitive-computation.uni-freiburg.de/modelingchallenge ======== PROCEEDINGS======== Proceedings of the workshop will probably be published as CEUR workshop proceedings. ======== ORGANIZERS ======== Ulrich Furbach, University of Koblenz Steffen Hölldobler, University of Dresden Marco Ragni, University of Freiburg Claudia Schon, University of Koblenz ======== PROGRAM COMMITTEE ======== Christoph Beierle, Fernuniversität Hagen Phan Minh Dung, Asian Institute of Technology, Dresden University of Technology Ulrich Furbach, University of Koblenz Steffen Hölldobler, University of Dresden Antonis C. Kakas, University Cyprus Sangeet Khemlani, Naval Research Lab, USA Robert A. Kowalski, Imperial College London Luís Moniz Pereira, Universidade Nova Lisboa Marco Ragni, University of Freiburg Nicolas Riesterer, University of Freiburg Claudia Schon, University of Koblenz Frieder Stolzenburg, Harz University of Applied Sciences Contact: Claudia Schon, schon@uni-koblenz.de -- [LOGIC] mailing list http://www.dvmlg.de/mailingliste.html Archive: http://www.illc.uva.nl/LogicList/ provided by a collaboration of the DVMLG, the Maths Departments in Bonn and Hamburg, and the ILLC at the Universiteit van Amsterdam