Logic List Mailing Archive
CfP special issue on the role of ontologies & knowledge in Explainable AI in Semantic Web Journal, Deadline: 10 Dec 2021
***********************************************************************
*Call for papers: Special Issue on
The Role of Ontologies and Knowledge in Explainable AI*
to be published in the Semantic Web journal, IOS Press.
Paper submission: December 10th, 2021
https://sites.google.com/view/special-issue-on-xai-swj
***********************************************************************
Explainable AI (XAI) has been identified as a key factor for developing
trustworthy AI systems. The reasons for equipping intelligent systems
with explanation capabilities are not limited to user rights and acceptance.
Explainability is also needed for designers and developers to enhance
system robustness and enable diagnostics to prevent bias, unfairness,
and discrimination, as well as to increase trust by all users in why
and how decisions are made.
The interpretability of AI systems has been described already a long time ago
since the mid 1980s, but only recently it became an active research
focus in the computer science community due to the advances of big data
and various regulations of data protection in developing AI systems,
such as the GDPR. For example, according to the GDPR, citizens have
the legal right to an explanation of decisions made by algorithms that
may affect them (e.g., see Article 22). This policy highlights the
pressing importance of transparency and interpretability in algorithm design.
XAI focuses on developing new approaches for explanations of black-box
models by achieving good explainability without sacrificing system performance.
One typical approach is the extraction of local and global post-hoc explanations.
Other approaches are based on hybrid or neuro-symbolic systems, advocating
a tight integration between symbolic and non-symbolic knowledge, e.g.,
by combining symbolic and statistical methods of reasoning.
The construction of hybrid systems is widely seen as one of the grand
challenges facing AI today. However, there is no consensus regarding
how to achieve this, with proposed techniques in the literature ranging
from knowledge extraction and tensor logic to inductive logic programming
and other approaches. Knowledge representation---in its many incarnations---
is a key asset to enact hybrid systems, and it can pave the way towards
the creation of transparent and human-understandable intelligent systems.
This special issue will feature contributions dedicated to the role played
by knowledge bases, ontologies, and knowledge graphs in XAI, in particular
with regard to building trustworthy and explainable decision support systems.
Knowledge representation plays a key role in XAI. Linking explanations to
structured knowledge, for instance in the form of ontologies, brings multiple
advantages. It does not only enrich explanations (or the elements therein)
with semantic information---thus facilitating evaluation and effective knowledge
transmission to users---but it also creates a potential for supporting the
customisation of the levels of specificity and generality of explanations
to specific user profiles or audiences. However, linking explanations,
structured knowledge, and sub-symbolic/statistical approaches raise a multitude
of technical challenges from the reasoning perspective, both in terms of
scalability and in terms of incorporating non-classical reasoning approaches,
such as defeasibility, methods from argumentation, or counterfactuals,
to name just a few.
**Topics of Interest**
Topics relevant to this special issue include ? but are not limited to ? the following:
- Cognitive computational systems integrating machine learning and automated reasoning
- Knowledge representation and reasoning in machine learning and deep learning
- Knowledge extraction and distillation from neural and statistical learning models
- Representation and refinement of symbolic knowledge by artificial neural networks
- Explanation formats exploiting domain knowledge
- Visual exploratory tools of semantic explanations
- Knowledge representation for human-centric explanations
- Usability and acceptance of knowledge-enhanced semantic explanations
- Evaluation of transparency and interpretability of AI Systems
- Applications of ontologies for explainability and trustworthiness in specific domains
- Factual and counterfactual explanations
- Causal thinking, reasoning and modeling
- Cognitive science and XAI
- Open source software for XAI
- XAI applications in finance, medical and health sciences, etc.
**Deadline**
- Submission deadline: 10th of December 2021.
(Papers submitted before the deadline will be reviewed upon receipt).
- Acceptance/rejection notification: March 31st, 2022
- Revision due: May 31st, 2022
- Estimated Publication Date: July 2022
**Author Guidelines**
Submissions shall be made through the Semantic Web journal website at
http://www.semantic-web-journal.net<http://www.semantic-web-journal.net/>.
Prospective authors must take notice of the submission guidelines posted at
http://www.semantic-web-journal.net/authors.
We welcome four main types of submissions: (i) full research papers,
(ii) reports on tools and systems, (iii) application reports,
and (iv) survey articles. The description of the submission types is
posted at http://www.semantic-web-journal.net/authors#types.
While there is no upper limit, paper length must be justified by content.
Note that you need to request an account on the website for submitting a paper.
Please indicate in the cover letter that it is for the "The Role of Ontologies
and Knowledge in Explainable AI? special issue. All manuscripts will be reviewed
based on the SWJ open and transparent review policy and will be made available
online during the review process.
Also note that the Semantic Web journal is open access.
http://www.semantic-web-journal.net/blog/call-papers-special-issue-role-ontologies-and-knowledge-explainable-ai
**Guest editors**
The guest editors can be reached at ontologies-knowledge-in-xai-swj@googlegroups.com<mailto:ontologies-knowledge-in-xai-swj@googlegroups.com> .
- Roberto Confalonieri, Free University of Bozen-Bolzano, Faculty of Computer Science, Italy
- Oliver Kutz, Free University of Bozen-Bolzano, Faculty of Computer Science, Italy
- Diego Calvanese, Department of Computing Science, Umeå University, Sweden and
Free University of Bozen-Bolzano, Faculty of Computer Science
- Jose M. Alonso, University of Santiago de Compostela, CiTIUS, Spain
- Shang-Ming Zhou, University of Plymouth, Faculty of Health, UK
--
[LOGIC] mailing list
http://www.dvmlg.de/mailingliste.html
Archive: http://www.illc.uva.nl/LogicList/
provided by a collaboration of the DVMLG, the Maths Departments in Bonn and Hamburg, and the ILLC at the Universiteit van Amsterdam