
Information, Processes and Games

Samson Abramsky

Oxford University Computing Laboratory

Contents

1 Introduction 2
1.1 Towards Information Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Matter and Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Some Background Theories 4
2.1 Domain Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Examples of Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Technical Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Conceptual Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Continuous Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.5 The Fixpoint Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.6 Further Developments in Domain Theory . . . . . . . . . . . . . . . . 11

2.2 Dynamic Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Process Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Some Basics of Process Algebra . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Does Information Increase in Computation? 17
3.1 Scott domain theory and Shannon information theory . . . . . . . . . . . . . 18
3.2 Domains with measurements: connecting the quantitative and qualitative views 20
3.3 Combining Scott Information and Shannon Information . . . . . . . . . . . . 20
3.4 The Quantum Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 The Logics of Birkhoff and von Neumann . . . . . . . . . . . . . . . . . . . . 23
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Games, Logical Equilibria and Conservation of Information Flow 24
4.1 Changing Views of Computation . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Some New Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Towards a “Logic of Interaction” . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4.1 The Static Conception of Logic . . . . . . . . . . . . . . . . . . . . . . 28
4.4.2 The Copy-Cat Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4.3 Game Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4.4 Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1



5 Emergent Logic: The Geometry of Information Flow 36
5.1 Background: Combinatory Logic . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Linear Combinatory Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 A Linear Combinatory Algebra of Partial Involutions . . . . . . . . . . . . . . 40

5.3.1 Function Application as Interaction . . . . . . . . . . . . . . . . . . . 41
5.3.2 Geometrical Representation of Application . . . . . . . . . . . . . . . 42
5.3.3 Algebraic Description of Application . . . . . . . . . . . . . . . . . . . 43

5.4 Combinators as Partial Involutions . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4.1 The Identity Combinator . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4.2 The Composition Combinator . . . . . . . . . . . . . . . . . . . . . . . 44
5.4.3 Other Affine Combinators . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4.4 Duplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.5 Putting the Pieces Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1 Introduction

Philosophers of science are concerned with explaining various aspects of science, and often,
moreover, with viewing science as a kind of gold-mine of philosophical opportunity. The
direction in both cases is philosophy from science. For a theoretical scientist, the primary in-
clination is often to see conceptual analysis as a preliminary to a more technical investigation,
which may lead to a new theoretical development. In short: science from philosophy. This
article is written mainly in the latter spirit, from the stand-point of Theoretical Computer
Science, or perhaps more broadly “Theoretical Informatics”: a — still largely putative —
general science of information. That being said, we hope that our conceptual discussions may
also provide some useful grist to the philosopher’s mill.

1.1 Towards Information Dynamics

The best-known existing mathematical theories of information are (largely) static in nature.
That is, they do not explicitly describe informatic processes and information flow, but rather
certain invariants of these processes and flows. There is by now ample experience from
Computer Science which indicates that it is fruitful, and eventually necessary, to develop
fully-fledged dynamical theories. We shall try to map some steps in this direction.

We begin by reviewing some of the theories developed in Computer Science which form
the background for our discussion. Then we consider a rather basic conceptual puzzle: (how)
does information increase in computation? This will provide a context for discussing
another important issue in theories of information: the distinction between qualitative and
quantitative theories, and how they can be reconciled — or, more positively, combined. Our
discussion here will still be at the level of static theories. We then go on to consider dynamic
theories proper.

1.2 Matter and Method

This article is well outside the author’s usual remit as a researcher. While it is clearly not
a contribution to philosophy, it cannot be said to be the usual kind of conceptually-oriented
overview of a scientific field which one might find in such a Handbook (and of which there are
some fine examples in the present volume) either; not least for the reason that the scientific

2



field we are attempting to overview does not exist yet. Rather, the purpose of this article is
to play some small part in causing this field to come into being.

What, then, is this nascent field? We would like to use the term Information Dynamics,
which was proposed some time ago by Robin Milner, to suggest how the area of Theoretical
Computer Science usually known as “Semantics” might emancipate itself from its traditional
focus on interpreting the syntax of pre-existing programming languages, and become a more
autonomous study of the fundamental structures of Informatics. I believe that the devel-
opment of such a field would transform our scientific vision of Information, and give us a
whole new set of tools for thinking about it. Hence its relevance for any attempt to develop
a Philosophy of Information.

Rather than a developed field of Information Dynamics, with some consensus as to what
its fundamental notions and methods are, what we have at present are some partial ex-
emplifications; some theories which have been shown to work well over certain ranges of
applications, and which exhibit both conceptual and mathematical depth. My approach to
conveying the current state of the art, and indicating what seem to me the major objectives
visible from where we stand now, is necessarily largely based on describing (some of) these
current theories—emphasizing those that seem most promising to me. The obvious danger
with this approach is that this article will appear to be a disjointed series of descriptions of
various formalisms. We have probably not succeeded in avoiding this completely—despite
the author’s best efforts. But we regard the expository aspect of this article as important in
itself. The theories we shall expound deserve to be known in wider circles than they presently
are. And our discussions of Domain theory, Game semantics and Geometry of Interaction
delve more into conceptual issues, while minimizing the level of technical detail, than other
accounts of which I am aware.

To assist the reader in keeping their bearings, we mention some of the main themes which
will thread through our discussion:

Information Increase in Computation We compute in order to gain information: but
how is this possible, logically or thermodynamically? How can it be reconciled with
the point of view of Information Theory? How does information increase appear in the
various extant theories? This will be an important explicit theme in our discussion of
background theories in Section 2, and particularly in Section 3. Obtaining a good ac-
count in the context of dynamic theories, as exemplified by those presented in Sections 4
and 5, is a key desideratum for future work.

Unifying Quantitative and Qualitative Theories of Information We mainly discuss
this explicitly in Section 3, where we describe some remarkable recent progress which
has been achieved by Keye Martin and Bob Coecke, in the setting of current static
theories of information (Scott Domain Theory and Shannon Information Theory). A
similar development in the setting of the dynamic theories described in Sections 4 and 5
is a major objective for future research.

Information Dynamics: Logic and Geometry We introduce Game Semantics and Ge-
ometry of Interaction on Sections 4 and 5 as substantial partial exemplications of
Information Dynamics. They have strong connections to both Logic and Geometry,
and form a promising new bridge between these two fields. While we shall not be able
to do full justice to these topics, we hope at least to raise the reader’s awareness of these
developments, and to provide pointers into the literature.

3



The Power of Copying, and Logical Emergence This is mainly developed in Section 5,
in the context of Geometry of Interaction-type models.

One theme which we have, regretfully, omitted is that of the emerging connections with
Physics, in particular with Quantum Information and Computation. Here there is
already much to say (see e.g. [6, 7, 8]). We have not included this material simply for lack of
the appropriate physical resources of space, time and energy.

2 Some Background Theories

Following our previous discussion, we can classify theories of information along two axes: as
static or dynamic, and as qualitative or quantitative. We list some examples in the following
table.

Static Dynamic

Qualitative Domain theory, Process Algebra
Dynamic Logic

Quantitative Shannon Information theory

Shannon Information theory is discussed in detail in another Chapter of this Handbook. In
this Section, we shall give brief overviews of the other three theories listed above, which have
all been developed within Computer Science—Domain Theory and Dynamic Logic originating
in the 1970’s, and Process Algebra in the 1980’s.

We shall devote rather more space to Domain Theory than to the other two theories, for
the following reasons:

• Domain Theory is much more integrally and explicitly a theory of information than
Dynamic Logic or Process Algebra, and will figure significantly in our subsequent dis-
cussions.

• The other theories will receive some coverage elsewhere in this Handbook, notably in
the Chapter by Baltag and Moss.

2.1 Domain Theory

Domain Theory was introduced by Dana Scott c. 1970 [74] as a mathematical foundation for
the denotational semantics of programming languages which had been pioneered by Christo-
pher Strachey. A domain is a partially ordered structure (D,⊑). The best intuitive reading
of elements of D is as information states. We pass immediately to some illustrative examples.

2.1.1 Examples of Domains

Flat Domains Given a set X, we can form a domain X⊥ by adjoining an element
⊥ 6∈ X, and defining an order by

x ⊑ y ⇐⇒ x = ⊥ ∨ x = y.

Frequently used examples : N⊥, B⊥, O = 1⊥. Here N = {0, 1, 2, . . .}, the set of natural
numbers; B = {tt,ff}, the set of booleans; and 1 = {∗}, an (arbitrary) one-element set.

We can use such flat domains to model computations in terms of very simple processes
of information increase. Thus a (possibly non-terminating) natural number computation can

4



be modelled in N⊥ in the following sense. Initially, no output has been produced. This “zero
information state” is represented by the bottom element ⊥. If the computation terminates,
a natural number n is produced. Thus we obtain the “process”

⊥ ⊑ n.

The case where no output is ever produced is captured by the “stationary process” ⊥, which
we can view more “dynamically” as

⊥ ⊑ ⊥ ⊑ · · ·

Streams Now consider the scenario where we have an unbounded or potentially infinite
tape (much as in a Turing machine), on successive squares of which symbols from some finite
alphabet Σ can be printed. This computational scenario is naturally modelled by the domain
Σ∞, the set of finite and infinite sequences of elements of Σ. This is ordered by prefix : x ⊑ y
if x = y, or x is finite, and for some (finite or infinite) sequence z, xz = y. Example:

〈0〉 ⊑ 〈0, 0〉 ⊑ 〈0, 0, 0〉 ⊑ · · · ⊑ 0ω

where 0ω is the infinite sequence of 0’s.
This example shows the ability of domain theory to model infinite computations as limits

of processes of information increase, where at each stage in the process the information state
is finite.

The Interval Domain Now suppose our computational scenario is that we are com-
puting a real number in the unit interval [0, 1]. Clearly we can only compute to finite precision
in finite time (and with finite resources), so we are forced to consider a scenario of approxima-
tion. The appropriate domain here is I[0, 1], consisting of all closed non-empty intervals [a, b]
where 0 ≤ a ≤ b ≤ 1. We read an interval [a, b] as expressing our current state of information
about the real r ∈ [0, 1] we are computing, namely that a ≤ r ≤ b. The ordering is by reverse
inclusion of intervals, or equivalently by

[a, b] ⊑ [c, d] ⇐⇒ a ≤ c ∧ d ≤ b.

This corresponds to refinement of our information state to a more accurate determination of
the location of the ideal element r. Note that the case [r, r] is allowed, for any r ∈ [0, 1]. In
fact, this embeds the unit interval into the interval domain as the set of maximal elements of
I[0, 1]. Note that for any real number r ∈ [0, 1], there is a process of information increase

[0, 1] ⊑ [a1, b1] ⊑ [a2, b2] ⊑ · · ·

where an+1 = an and bn+1 = bn/2 if r is in the left half-interval of [an, bn], and an+1 = an/2
and bn+1 = bn if r is in the right half-interval. Clearly r is the supremum of the an and the
infimum of the bn. Thus every real can be computed as the limit of a process of information
increase where at each finite stage of the process the interval has rational end-points, and
hence represents a finite information state.

5



Partial Functions A somewhat more abstract example is provided by the set Pfn(X,Y )
of partial functions from X to Y , ordered by inclusion. To see how this can be used in com-
putational modelling, consider the recursive definition of the factorial function:

fact(n) = n! = n · (n− 1) · (n − 2) · · · 2 · 1.

fact(n) = if n = 0 then 1 else n× fact(n− 1).

We can understand this recursive definition as specifying a process of information increase
over the domain Pfn(N,N). Initially, we are at the zero information state (least element of
the domain) ∅; we know nothing about which ordered pairs are in the graph of the function
being defined recursively. Inspection of the base case of the recursion (where n = 0) allows
us to deduce that the pair (0, 1) is in the graph of the function. Once we know this, we can
infer that in the case n = 1,

fact(1) = 1 × fact(0) = 1 × 1 = 1.

Thus the process of information increase proceeds as follows:

∅ ⊆ {(0, 1)} ⊆ {(0, 1), (1, 1)} ⊆ · · ·

We can see inductively that the n’th term in this sequence will give the values of factorial on
the arguments from 0 to n − 1; and the least upper bound of this increasing sequence, given
simply by its union, will be the factorial function.

2.1.2 Technical Issues

These examples serve to motivate a number of additional axioms for domains. There is in
fact no unique axiom system for domains. We shall mention the most fundamental forms of
such axioms.

Completeness As we have seen, an essential point of Domain Theory is to allow the descrip-
tion of infinite computations or computational objects as limits of processes of information
increase. A corresponding property of completeness of domains is required, to ensure that
a well-defined unique limit exists for every such process. Such limits are expressed as least
upper bounds in order-theoretic terms. The idea is that for a process

d0 ⊑ d1 ⊑ d2 ⊑ · · ·

the limit should contain all the information produced at any stage of the process; and only
the information produced by some stage of the process. The first point implies that the limit
should be an upper bound; the second, that it should be the least upper bound.

Which class of increasing sets should be regarded as processes of information increase?
The most basic class, which has figured in all our examples to date, is that of increasing
sequences, or “ω-chains” in the usual technical parlance. The axiom requiring completeness
for all such chains, which picks out the class of “ω-complete partial orders”, is often used
in Domain Theory. Sometimes completeness for a larger class of sets, the directed sets, is
used. This reflects technical issues akin to the distinction in Topology between sequential
completeness and completeness for nets or ultrafilters, and we shall not pursue this here.

6



Least Elements All our examples have had a least element: ⊥ for flat domains, the empty
stream for Σ∞, the unit interval [0, 1] for I[0, 1], and the empty set for Pfn(X,Y ). This
provides a zero information point, and hence a canonical starting point for processes of infor-
mation increase. Mathematically, least elements are essential for the least fixed point theorem
which we shall encounter shortly. There are schemes for Domain Theory in which domains (or
“pre-domains”) are not required to have least elements in general, but they always enter the
theory at crucial points, sometimes through a general operation of adjoining a least element
to a predomain to form a domain (“lifting”).

Approximation The intuition developed through our examples for how general elements
of the domain can be approximated by others, which may in particular be of finite character,
is captured formally by requiring domains to be algebraic or continuous. We shall not develop
these notions here, but will simply note for our examples:

• For flat domains such as N⊥, we can regard all elements as of finite character.

• Every stream in Σ∞ can be realized as the least upper bound of an increasing sequence
of finite streams.

• Every real in [0, 1], and more generally every interval in I[0, 1], can be realized as the
least upper bound of an increasing sequence of intervals with rational end-points.

• Every partial function in Pfn(X,Y ), and in particular every total function from X
to Y , where X and Y are countable, can be realized as the least upper bound of an
increasing sequence of finite partial functions. (The case where X or Y are uncountable
is a typical example where we would naturally resort to general directed sets rather
than sequences.)

2.1.3 Conceptual Issues

Why Partial Orders? Having developed some examples and intuitions, we now re-examine
the basic concept of domains as partial orders (D,⊑). If we think of the elements of D as
information states, the way we articulate this structure is qualitative in character. That is,
we don’t ask how much information a given state contains, but rather a relational question:
does one state convey more information than another? We read d ⊑ e as “e conveys at least
as much information as d”. If we consider the partial order axioms with this reading:

Reflexivity x ⊑ x
Transitivity x ⊑ y ∧ y ⊑ z =⇒ x ⊑ z
Anti-Symmetry x ⊑ y ∧ y ⊑ x =⇒ x = y.

then Reflexivity is clear; and Transitivity also very natural. Anti-Symmetry can be seen as
embodying an important Principle of Extensionality : if two states convey the same informa-
tion, they are regarded as equal.

States of What? We have been using the term “information state” to convey the intuition
for what the elements of a domain represent. In fact, there is a certain creative ambiguity
lurking here, between two interpretations of what these are states of :

• We may think of states of a computational system in itself, characterized in terms of
the information they contain, as an “intrinsic” or “objective” property of the system,
independently of any observer.

7



• We may implicitly introduce an observer of the system, and understand the information
content of a system in terms of the observer’s state of information about it.

In the first reading, we think of the partial elements of the domain in a more ontological
way, as necessary extensions to our universe of discourse to represent the range of possible
outputs of computational systems which may run for ever, and may fail to terminate or to
produce information beyond some finite stage of the computation. In the second reading, we
are thinking more epistemologically.

In fact, both readings are useful—and are widely used. It is very common to slip without
explicit mention from one to the other—nor, for the technical purposes of the theory, does this
seem to do any harm. Mathematically, this distinction can be related to the duality between
points and properties, in the sense of Stone-type dualities: the duality between the points
of a topological space, and its basic “observable properties”—the open sets. The particular
feature of domains which allows this creative ambiguity between points and properties to
be used so freely without incurring any significant conceptual confusions or overheads is that
basic points and basic properties (or observations) are essentially the same things. We explain
this in terms of an example. Consider a finite steam s in Σ∞. On the one hand, this can
be viewed as a point, i.e. as an element of the domain — which may be produced by some
system which computes the elements of s in finite time, and then continues to run forever
without producing any more output. On the other hand, we may view this finite stream s as
a property: the property satisfied by any system with output stream t such that s ⊑ t. It is
a finitely observable property, since we can tell whether a system satisfies it after only a finite
time spent observing the system. Whether we take Σ∞ as the space of points X generated
as limits of increasing sequences of finite streams, or as the “logic” (or open-set lattice) L
of properties generated by the basic observations given by finite streams, we get the same
thing: the topology of X will be L, and the space of points generated (as completely prime
filters) over L will be X. This is Stone duality. An extensive development of Stone duality
for Domain Theory has been given in [1].

In fact, we would argue that it is hard to avoid the epistemic stance entirely. For example,
the plausibility of something as basic as the Anti-Symmetry axiom is much greater if we think
in terms of an observer. Much of the conceptual power of Domain Theory comes from the
idea that it articulates how we can approximate infinite ideal objects by processes which use
only finite resources at each finite stage.

Static or Dynamic? Another subtle underlying issue which is not usually made explicit
is that Domain Theory is a static theory resting on dynamic intuitions. Indeed, we have
motivated the theory in terms of certain processes of information increase. Processes happen
in time; thus time is present implicitly in Domain Theory. This underlying temporality can
be developed more explicitly within the Domain Theoretic framework:

• One can add axioms to the basic ones for domains to pick out those domains which
are concrete, in the sense that we can understand information increase in terms of a
temporal flow of events. Now the ordering is not simply one of information content, but
involves an idea of causality, so that some events must temporally precede others. This
leads to notions of event structures, which have been applied to the study of concurrent
processes. Very similar structures have shown up recently in Theoretical Physics, in the
Causal Sets approach to quantum gravity.

8



• In some remarkable recent work, Domain Theoretic tools are used to characterize glob-
ally hyperbolic space-time manifolds in terms of their causal orderings.

However, it should be said that most of the applications of Domain Theory in denotational
semantics are carried out at a much higher level of abstraction, where temporality appears
only in the most residual form. This arises from the fact that computations or programs
are modelled in the Domain-Theoretic denotational framework essentially as functions from
inputs to outputs.

2.1.4 Continuous Functions

We now consider the appropriate notion of function between domains. LetD, E be ω-complete
partial orders. A function f : D → E is monotonic if, for all x, y ∈ D:

x ⊑ y =⇒ f(x) ⊑ f(y).

It is continuous if it is monotonic, and for all ω-chains (xn)n∈ω in D:

f(
⊔

n∈ω

xn) =
⊔

n∈ω

f(xn).

Examples We consider a number of examples of functions f : Σ∞ → B⊥, where Σ = {0, 1}.

1. f(x) = tt if x contains a 1, f(x) = ⊥ otherwise.

2. f(x) = tt if x contains a 1, f(0∞) = ff, f(x) = ⊥ otherwise.

3. f(x) = tt if x contains a 1, f(x) = ff otherwise.

Of these: (1) is continuous, (2) is monotonic but not continuous, and (3) is not monotonic.
As these examples indicate, the conceptual basis for monotonicity is that the information

in Domain Theory is positive; negative information is not regarded as stable observable in-
formation. That is, if we are at some information state s, then for all we know, s may still
increase to t, where s ⊑ t. Thus we can only use information which is stable under every
possible information increase in a computable process. This idea is very much akin to the
use of partial orders in Kripke semantics for Intuitionistic Logic, in particular in connection
with the interpretation of negation in that semantics. The continuity condition, on the other
hand, reflects the fact that a computational process will only have access to a finite amount
of information at each finite stage of the computation. If we are provided with an infinite
input, then any information we produce as output at any finite stage can only depend on
some finite observation we have made of the input.

Note by the way how this discussion is permeated with the epistemic stance. Continuous
functions produce points as outputs on the basis of observations they make of their inputs.
Thus the duality between these two points of view plays a basic rôle in our very understanding
of continuous functions. (Mathematically, this duality appears in the guise of the compact-
open topology for function spaces). This point can (and often is) glossed over in Domain
Theory by virtue of the coincidence of finite points and finite properties which we have
already discussed.

9



2.1.5 The Fixpoint Theorem

We now consider a simple but powerful and very widely applicable theorem, which is one of
the main pillars of Domain Theory, since by virtue of this result it provides a general setting
in which recursive definitions can be understood.

Theorem 2.1 (The Fixpoint Theorem) Let D be an ω-cpo with a least element, and
f : D → D a continuous function. Then f has a least fixed point lfp(f). Moreover, lfp(f) is
defined explicitly by:

lfp(f) =
⊔

n∈ω

fn(⊥). (1)

We give the proof, since it is elementary, and exhibits very nicely how the basic axiomatic
structure of Domains is used.

Proof Note that fn(⊥) is defined inductively by:

f0(⊥) = ⊥, fk+1(⊥) = f(fk(⊥)).

We show firstly that this sequence is indeed an ω-chain . More precisely, we show for all k ∈ N

that fk(⊥) ⊑ fk+1(⊥). For k = 0, this is just ⊥ ⊑ f(⊥). For the inductive case, assume
that fk(⊥) ⊑ fk+1(⊥). Then by monotonicity of f , f(fk(⊥)) ⊑ f(fk+1(⊥)), i.e. fk+1(⊥) ⊑
fk+2(⊥), as required.

Next we show that (1) does yield a fixpoint. This is a simple calculation using the
continuity of f :

f(
⊔

n∈ω

fn(⊥)) =
⊔

n∈ω

fn+1(⊥) =
⊔

n∈ω

fn(⊥).

The last step uses the (easily verified) fact that removing the first element of an ω-chain does
not change its least upper bound.

Finally, suppose that a is a fixpoint of f . Then we show by induction that, for all k,
fk(⊥) ⊑ a. The basis is just ⊥ ⊑ a. For the inductive step, assume fk(⊥) ⊑ a. Then by
monotonicity of f ,

fk+1(⊥) = f(fk(⊥)) ⊑ f(a) = a.

Thus a is an upper bound of (fn(⊥) | n ∈ ω), and hence
⊔

n∈ω f
n(⊥) ⊑ a. �

Factorial revisited We now reconstrue the definition of the factorial function we considered
previously as a function on domains:

F : Pfn(N,N) −→ Pfn(N,N),

defined by
F (f)(n) = if n = 0 then 1 else n× f(n− 1).

We can check that F is continuous. Hence we can apply the fixpoint theorem to F , and
conclude that it has a least fixpoint lfp(f), defined explicitly by (1). Now we can make the
(explicit, non-circular) definition:

fact = lfp(F ).

One can check that this definition yields exactly the expected definition of factorial. In fact,
the increasing sequence constructed in forming the least fixpoint according to (1) is exactly
the one we described concretely in our previous discussion of the factorial.

Thus in particular the processes of information increase we have been emphasizing are
involved directly in the construction underpinning the Fixpoint Theorem.

10



2.1.6 Further Developments in Domain Theory

This is of course just the beginning of an extensive subject. We mention a few principal
further features of Domain Theory:

Function Spaces A key point of the theory is that, given domains D and E, [D −→ E],
the set of continuous functions from D to E, will again be a domain, with the following
pointwise ordering :

f ⊑ g ⇐⇒ ∀x ∈ D. f(x) ⊑E g(x).

Moreover, operations such as function application and currying or lambda-abstraction
are continuous. This means that we can form models of typed λ-calculi and higher-order
computation within Domain Theory, which is of central importance for the denotational
semantics of programming languages. Of course, such domains of higher-order functions
are very “abstract”—they are in fact the prime examples of domains which are not
concrete in the sense of [58]—and notions of temporality are left quite far behind.
(There have attempts to capture more of these notions by varying the definition of the
order on function spaces, but these have not been completely successful—and in some
cases, provably cannot be).

Recursive Types Remarkably, the idea of the Fixpoint Theorem, and its use to give mean-
ing to recursive definitions of elements of domains, can be lifted to the level of domains
themselves, to give meaning to recursive definitions of types. This even extends to the
free use of function spaces in recursive definitions of domains, leading to the construc-
tion of domains D whose continuous function spaces [D −→ D] are isomorphic to D
or to a subspace of D. This allows models of the type-free λ-calculus, and of various
strongly impredicative type theories, to be given within Domain Theory.

Powerdomains There are also a number of powerdomain constructions P (D), which build a
domain of subsets of D. This allows various forms of non-deterministic and concurrent
computation to be described. There is also a probabilistic powerdomain construction,
which provides semantics for probabilistic computation.

Some suggestions for further reading on Domain Theory The Handbook article
[18] is a comprehensive technical survey. The monograph [42] focusses on the connections
to topology and lattice theory. The texts [77, 25] show how domain theory is used in the
semantics of programming languages.

2.2 Dynamic Logic

Dynamic Logic originates at the confluence of two sources: modal logic and its Kripke se-
mantics; and Hoare logic of programs.

Modal Logic Modal Logic adds to a standard background logic (say classical propositional
calculus) the propositional operators 2 and 3, expressing ideas of “necessity” and “possibil-
ity”. This was transformed from a philosophical curiosity to a vibrant and highly applicable
branch of mathematical logic by the introduction of Kripke semantics. This is based on Kripke
structures (W,R, V ), where W is a set of worlds, R ⊆ W ×W is an “accessibility relation”,
and V : P → P(W ) is a valuation which for each propositional atom in P assigns the set of

11



worlds in which it is true. This valuation is then extended to one on formulas, with the key
clauses:

w |= 2φ ≡ ∀w′. wRw′ ⇒ w′ |= φ

w |= 3φ ≡ ∃w′. wRw′ ∧ w′ |= φ.

The importance of the Kripke semantics is that it gives modal logic a clear mathematical
purpose: it is a logical language for talking about such structures, which strikes a good
balance between expressive power and tractability. Computer Science provides a wealth of
situations where such structures arise naturally, and where there is a clear need for the
verification of their logical properties. The dominant interpretation of Kripke structures
in Computer Science replaces metaphysical talk of “possible worlds” by the more prosaic
terminology of states. Here we think of states of a system, which are generally characterized
by the information we have about them. In a Kripke structure, the direct information we
have about a state is which atomic propositions are true in that state. However, while we
seem again to be speaking about information states, as in our discussion of Domain Theory,
there is an important difference. In Domain theory, (as in Kripke semantics for Intuitionistic
Logic), information is in general partial, but also persistent. Information can only increase
along a computation. We may never reach total information, but we will never lose what
we had—just as we can never (in current Physics) change the past. (Indeed, the two are
intimately related. In the implicit temporality of Domain Theory, the current information
state summarizes all the information produced in the computation up till now; whatever
happens in the future cannot change that). By contrast, Kripke structures for modal logics
correspond to an imperative world. We may have perfect knowledge of the current state,
but the dynamics of the system, as described by the accessibility relation, allow in general
for arbitrary state change. A basic Computer Science model for this scenario is provided
by taking the states to be memory states of a computer. At some instant of time we may
have a complete snap-shot of the memory. But our repertoire of actions allow us to assign
an arbitrary new value into any memory cell, so we can go from any given state to any
other (possibly by a sequence of basic actions). In particular, the key feature of computer
memory, the fact that we can destructively over-write the previous contents of a memory cell,
(a feature which is not, apparently, available for our own memories), ensures that the past is
not in general carried forward.

Hoare Logic Hoare Logic provides a compositional proof theory for reasoning about im-
perative programs. It is a two-sorted system. We have a syntax for programs P , and one for
formulas φ, which are generally taken to be formulas of predicate calculus. Such formulas
can be used to express properties of program states (i.e. memory state snap-shots as in our
previous discussion, or more formally assignments of values to the variables appearing in the
program), by a variable pun by which the individual variables used in formulas are iden-
tified with the program variables. The basic assertions of the system are taken to be Hoare
triples φ{P}ψ. Such a triple is said to be valid if, in any initial state satisfying the formula
φ (the precondition), execution of the program P will, if it terminates, result in a final state
satisfying the formula ψ (the post-condition).

The variable pun is put to use in the axiom for assignment statements:

φ[e/x]{x := e}φ

which says that φ is true after executing the assignment statement x := e if φ with e substi-
tuted for x was true before.

12



The key rules of the system allow for compositional derivation of assertions about complex
programs from assertions about their immediate sub-programs.

φ{P}ψ ψ{Q}θ

φ{P ;Q}θ

φ ∧B{P}ψ φ ∧ ¬B{Q}ψ

φ{if B then P else Q}ψ

φ ∧B{P}φ

φ{while B do P}φ ∧ ¬B

Here P ;Q is the sequential composition which firstly performs P , then Q; if B then P else Q
is the conditional which evaluates B in the current state; if it is true then P is performed,
while if it is false, Q is performed. Finally, while B do P evaluates B; if it is true, then P
is performed, after which the whole statement is repeated; while if it is false, the statement
terminates immediately.

Dynamic Logic Dynamic Logic arises by combining salient features of these two systems.
Note that we are reasoning about programs in terms of the input-output relations on states
which they define. If the program is deterministic, this relation will actually be a partial
function, but there is no need to insist on this. We can thus view each program P as defining
a relation R ⊆ S × S, where S is the set of states. Thus for each individual program, we
obtain a Kripke structure (S,R, V ), where V is the valuation which assigns truth conditions
on states for some repertoire of state predicates. The key point of contact between the two
systems is that validity of the Hoare triple φ{P}ψ corresponds exactly to the validity of the
modal formula

φ→ 2ψ

in the Kripke structure (S,R, V ), where by validity we mean that

s |= φ→ 2ψ

for every s ∈ S.
As a first extension, we can consider multiple programs, each defining an accessibility

relation R. To keep track of which program we are talking about at any given point, we
replace 2 by [R], so that the formula corresponding to the Hoare triple now reads as

φ→ [R]ψ.

This is just multi-modal logic, with mutiple accessibility relations, each with its own modal-
ities. Note that it is now completely meaningful to consider modal formulas which make
assertions about programs which go well beyond Hoare triples, e.g.

[R]〈S〉φ→ 〈S〉[R]φ.

However, at this point we lack the compositional analysis of programs offered by Hoare Logic.
The final step to (propositional) Dynamic Logic comes by considering a two-sorted system

with a mutually recursive syntax. We have a set P of propositional atoms as before, and also
a set Rel of basic relations. The syntax of formulas is given by

φ ::= p ∈ P | ¬φ | φ ∧ ψ | [R]φ

while the syntax of relations R is given by

R ::= r ∈ Rel | R;S | R ∪ S | R∗ | φ?

13



We have not included the modal operator 〈R〉 as primitive syntax, since we can define

〈R〉φ ≡ ¬[R]¬φ.

In this syntax, any program is allowed to appear as a modal operator on formulas, while
in addition to the usual regular operations of relational algebra (composition, union, and
reflexive transitive closure), any formula is allowed to appeared as a program test (we may
call this the formula pun). In general, this is too strong, and only a restricted class of tests
should be allowed. Tests are interpreted as sub-identity relations—so φ? is the set of all (s, s)
such that φ is true in s.

Note that the usual imperative program constructs can be recovered from these relational
constructs. Sequential composition is provided directly, while

if b then R else S ≡ b;R ∪ ¬b;S while b do R ≡ (b;R)∗;¬b.

The Hoare Logic axioms can now be derived from the following modal axioms:

[R;S]φ ↔ [R][S]φ
[R ∪ S]φ ↔ [R]φ ∧ [S]φ

[ψ?]φ ↔ ψ → φ

and the rule
φ→ [R]φ

φ→ [R∗]φ
.

2.2.1 Discussion

While Hoare Logic is specifically tailored to the needs of conventional imperative programming
languages, Dynamic Logic is much more generic in style; and indeed, it has been applied in
a range of contexts, including Natural Language and Quantum Logic. In the Chapter in this
Handbook by Baltag and Moss, a version of Dynamic Logic is described in which the states
are information states of agents, and the actions are epistemic actions by these agents, such
as public announcements.

As a general formalism, though, Dynamic Logic offers only a limited analysis of informa-
tion dynamics. Indeed, despite its name, it is not really very dynamic, as it is limited to
speaking of the input-output behaviour of relations. This is confirmed by the simple trans-
lation it admits into first-order logic (augmented with fixpoints to account for the reflexive
transitive closure operation on relations).

Suggestion for further reading The book [50] is a comprehensive technical reference,
while [30] is a wide-ranging study. Applications to Natural Language appear in [49].

2.3 Process Algebra

2.3.1 Background

One of the major areas of activity in Theoretical Computer Science over the past three
decades has been Concurrency Theory, and in particular Process Algebra. Whereas modelling
sequential computation in terms of input-output functions or relations essentially uses off-the-
shelf tools from Discrete Mathematics and Logic, albeit in novel combinations and with new
technical twists, and even Domain Theory can be seen as an off-shoot of General Topology and

14



Lattice Theory, Concurrency Theory has really entered some new territory. In Concurrency
Theory, the computational processes themselves become the objects of study; concurrent
systems are executed for the behaviour they produce, rather than to compute some pre-
specified function. What function does the Internet compute? In this setting, even such
corner-stones of computation as Turing’s analysis of computability do not provide all the
answers. For all its conceptual depth, Turing’s analysis of computability was still calibrated
using familiar mathematical objects: which functions or numbers are computable? When we
enter the vast range of possibilities for the behaviour of computational systems in general,
the whole issue of what it means for a concurrent formalism to be expressively complete
must be re-examined. There is in fact no generally accepted form of Church-Turing thesis
for concurrency; and no widely accepted candidate for a universally expressive formalism.
Instead, there are a huge range of concurrency formalisms, embodying a host of computational
features.

Another question which ramifies alarmingly in this context is what is the right notion
of behavioural equivalence of processes. Again, a large number of candidates have arisen.
Experts use what seems most appropriate for their purpose; it is not even plausible that a
single notion will gain general acceptance as “the right one”.

In fact, a great deal of progress has been achieved, and the situation is much more positive
than might appear from these remarks. There is a great diversity of particular formalisms
and definitions in Concurrency Theory; but underpinning these are a much smaller num-
ber of underlying paradigms and technical tool-kits, which do provide effective intellectual
instruments, both for fundamental research and applications.

Examples include:

• labelled transition systems and bisimulation

• naming and scope restriction and extrusion

• the automata-theoretic paradigm for model-checking

These tool-kits are the real fruits of these theories. They may be compared to the traditional
tool-kits of physics and engineering: Differential Equations, Laplace and Fourier Transforms,
Numerical Linear Algebra, etc. They can be applied to a wide range of situations, going well
beyond those originally envisaged, e.g. Security, Computational Biology, . . .

2.3.2 Some Basics of Process Algebra

We now turn to a brief description of a few basic notions, in a subject on which there is a vast
literature. We begin with the key semantic structure, namely labelled transition systems. A
labelled transition system is a structure (S,Act, T ), where S is a set of states, Act is a set of
actions, and T ⊆ S×Act×S is the transition relation. We write s

a
−→ t for (s, a, t) ∈ T . Note

how close this is to the notion of Kripke structure we have already encountered. However, that
notion is tuned to a state-based view of computation, in which we focus on assertions which are
true in given states. The transition relation plays an indirect rôle, in controlling the behaviour
of the modal operators. By contrast, the point of view in labelled transition systems is that
states are not directly observable, and hence do not have properties directly attributable to
them. Rather, it is the actions which are the basic observables, and we infer information about
states indirectly from their potential for observable behaviour. Thus the point of view here is
closer to automata theory. A key difference from classical automata theory, however, is that
we look beyond the classical notion of behaviour in terms of the words or traces (sequences of

15



actions) accepted or generated by the system, and also encompass branching behaviour. The
classical example which illustrates this is the following:

•

•

a

?

•
�

b

•

c

-

6∼

•

•
�

a

•

a

-

•

b

?
•

c

?

These systems have the same linear traces {ab, ac}. However, if we think of a scenario where
we can perform experiments by pressing buttons labelled with the various actions, and observe
if the experiments succeed, i.e. whether the system performs the corresponding action, then
after observing an a in the first system, it is clear that whether we press the b button or
the c button, we will succeed; whereas in the second system, one button will succeed and
the other won’t. A fundamental notion of process equivalence which enforces this distinction
is bismulation. We define a bisimulation on a labelled transition system (S,Act, T ) to be a
relation R ⊆ S × S such that:

sRt ∧ s
a

−→ s′ ⇒ ∃t′. t
a

−→ t′ ∧ s′Rt′

∧

sRt ∧ t
a

−→ t′ ⇒ ∃s′. s
a

−→ s′ ∧ s′Rt′

We write s ∼ t if there is a bisimulation R such that sRt. We can see that indeed the root
states of the two trees in the above example are not bisimilar.

We now turn to a suitable modal logic for labelled transition systems. The basic form for
such a logic is Hennessy-Milner Logic. This has modal operators [a], 〈a〉 for each action a. In
general, this logic does not have (or require) any propositional atoms; just constants tt (true)
and ff (false). The semantic clauses are as expected for a multi-modal logic, where we view
the transition relation as an Act-indexed family of relations {Ta}a∈Act, where Ta ⊆ S × S is
defined by

Ta = {(s, t) | (s, a, t) ∈ T}.

Thus we have the clauses

s |= [a]φ ≡ ∀t. s
a

−→ t ⇒ t |= φ

s |= 〈a〉φ ≡ ∃t. s
a

−→ t ∧ t |= φ.

The basic result here is that, under suitable hypotheses, two states in a labelled transition
system are bisimilar if and only if they satisfy the same formulas in this modal logic. Thus in
our example above, the first system satisfies the formula 〈a〉(〈b〉tt ∧ 〈c〉tt), while the second
does not.

We now turn, finally, to the algebraic aspect of process algebra. Just as we structured
the programs in Dynamic Logic using relational algebra, so we seek an algebraic structure
to generate a wide class of process behaviours. As we have already discussed, there is no
one universally adopted set of process combinators, but we shall consider a standard set of
operations, essentially a fragment of Milner’s CCS. The syntax of process terms P is defined,
assuming a set Act of actions, as follows:

P ::= a.P (a ∈ Act) | P +Q | 0 | P ‖ Q.

16



Here a.P is action prefixing ; first do a, then behave as P . P +Q is non-deterministic choice
between P and A, while 0 is inaction; the process which can do nothing. Finally, P ‖ Q
is parallel composition, which we take here in a simple form, not involving any interaction
between P and Q.

We formalize these intuitions as a labelled transition system in which the states are the
process terms, while the transition relation is defined by structural induction on the syntax
of terms—the Structural Operational Semantics paradigm.

The transition relation is specified as follows.

a.P
a

−→ P

P
a

−→ P ′

P +Q
a

−→ P ′

Q
a

−→ Q′

P +Q
a

−→ Q′

P
a

−→ P ′

P ‖ Q
a

−→ P ′ ‖ Q

Q
a

−→ Q′

P ‖ Q
a

−→ P ‖ Q′

This labelled transition system gives rise to a notion of bimulation, which is an equivalence
relation, and in fact a congruence for the process algebra. The corresponding equational
theory for the algebra can be axiomatized as follows:

P + P = P
P + 0 = 0
P +Q = Q+ P

P + (Q+R) = (P +Q) +R

together with the following equational scheme. If P ≡
∑

i∈I ai.Pi and Q ≡
∑

j∈J bj .Qj , then:

P ‖ Q =
∑

i∈I

ai.(Pi ‖ Q) +
∑

j∈J

bj .(P ‖ Qj).

This is an infinite family of equations. In fact, the equational theory of bisimulation on
process terms is not finitely axiomatizable; however, with the aid of an auxiliary operator
(the “left merge”), a finite axiomatization can be achieved.

2.3.3 Discussion

Process Algebra can be used as a vehicle for discussions of information flow and information
dynamics. It does not in itself offer a fully fledged theory of these notions.

Process Algebra is a qualitative theory of process behaviours. It is our first example of a
dynamic theory, since it makes temporality and the flow of events explicit.

Suggestions for further reading Introductory textbooks include [54, 71, 27, 72]. The
Handbook of Process Algebra [31] provides wide technical coverage of the field.

3 Does Information Increase in Computation?

Let us begin with an inane question:

Why do we compute?

The natural answer is: to gain information (which we did not previously have)! But how is
this possible?

17



Problem 1: Isn’t the output implied by the input?

Problem 2: Doesn’t this contradict the second law of thermodynamics?

A logical form of Problem 1 This problem lies adjacent to another one at the roots
of logic. If we extract logical consequences of axioms, then surely the answer was already
there implicitly in the axioms; what has been added by the derivation? Since computation
can itself, via the Curry-Howard isomorphism, be modelled as performing cut elimination on
proofs, or normalization of terms, the same question can be asked of computation. A normal
form which is presented as the result of a computation is logically equal to the term we started
with:

M −→∗ N =⇒ JMK = JNK.

so what has been added by computing it?
The challenge here is to build a useful theory which provides convincing and helpful

answers to these questions. We simply make some preliminary observations. Note that
normal forms are in general unmanagably big. Useful output has two aspects:

• Making information explicit—i.e. extracting the normal form.

• Data reduction—getting rid of a lot of the information in the input.

(Note that it is deletion of data which creates thermodynamic cost in computation). Thus
we can say that much (or all?) of the actual usefulness of computation lies in getting rid of
the hay-stack, leaving only the needle.

Problem 2: Discussion While information is presumably conserved in the total system,
there can be information flow between, and information increase in, subsystems. (A body can
gain heat from its environment). Subsystems which can observe incoming information from
their environment, and act to send information to their environment, have the capabilities of
agents.

Moral: Agents and their interactions are intrinsic to the study of information flow and
increase in computation. The classical theories of information do not reflect this adequately.

But before turning to study agents and interaction, we shall look at two major extensional
theories of information.

3.1 Scott domain theory and Shannon information theory

Two important theories of information give contrasting views on the question of information
increase1. Information theory à la Shannon is a quantitative theory which considers how given
information can be transmitted losslessly on noisy channels. In this process, information may
only be lost, never increased. Domain theory à la Scott is, as we have seen, a qualitative
theory in which the key notion is the partial order x ⊑ y, which can be interpreted as: “y has
more information content than x”. This theory is able to model a wide range of computational
phenomena. To take a classical example, consider the interval bisection methods for finding

1Indeed, I was once challenged on this point by an eminent physicist (now knighted), who demanded to
know how I could speak of information increasing in computation when Shannon Information theory tells us
that it cannot! My failure to answer this point very convincingly at the time led me to continue to ponder the
issue, and eventually gave rise to this section of the Chapter.

18



the root of a function. We start with an interval in which the root is known to lie. At each
step, we halve the length of the interval being considered. This represents an increase in our
information about the location of the root, in an entirely natural sense. In the limit, this
nested sequence of intervals contains a single point, the root – we have perfect information
about the solution.

More generally, in Domain theory recursion (and thereby control mechanisms such as
iteration) is modelled as the least fixed point of a monotonic and (order-)continuous function:

⊥ ⊑ f⊥ ⊑ f2⊥ ⊑ · · ·
⊔

k

fk⊥

since f(
⊔

k f
k⊥) =

⊔

k f
k+1⊥ =

⊔

k f
k⊥. Thus a basic tenet of this theory is that information

does increase during computation, and in particular this is how the meaning of recursive
definitions is given.

It is intriguing to consider that the different viewpoints taken by Information theory and
Domain theory may have been influenced by their technological roots. Information theory was
summoned forth by the needs of the telecommunications industry, whose task is to transmit
the customer’s data with the highest possible fidelity. Domain theory arose as a mathematical
theory of computation; the task of computation is to “add value” to the customer’s data2.

How can these views be reconciled? Information theory is a thermodynamic theory;
Shannon information is negative entropy. From this viewpoint, the total information of a
system can only decrease; however, information can flow from one subsystem into another,
just as a body can be warmed by transferring heat from its environment.

The Domain theory view, we suggest, arises most naturally if we think of adding an
observer to a system. It is the observer’s information which increases during a computation.
This reading has a precise mathematical analogue in the view of Domain theory as a “logic
of observable properties” [1]. Information increase is always, necessarily it seems, relative to
a sub-system. Moreover, this is a subsystem which can observe its environment, and which
may, symmetrically, act itself to direct information to the environment. It is then a small
step to viewing such sub-systems as agents.

It is worth adding that Shannon Information Theory also relies on such a view for its
guiding intuitions. One of the standard ways of motivating Shannon information is in terms
of “twenty questions”: the number of bits of information in a message is how many yes/no
questions we would need to have answered in order to know the contents of the message.
Again, implicit here is some interaction between agents. And of course, the purpose of
communication itself is to transfer information from one agent to another.

We need a quantitative theory to deal with essentially quantitative issues such as com-
plexity, information content, rate of information flow etc. However, the weakness of a purely
quantitative theory is that numbers always compare, so that some more subtle issues are ob-
scured, such as, crucially, distinguishing different directions of information increase. Beyond
this, by combining quantitative and qualitative aspects, e.g. in formulating conditions on
“informatic processes”, a unified theory can be more than the sum of its parts.

2Which of course begs our question of how this can be possible thermodynamically. The answer is, again,
that it is the customer’s data which is having value added to it; just as buying energy from the National Grid
does not violate the Second Law.

19



3.2 Domains with measurements: connecting the quantitative and quali-

tative views

An important step towards unifying the qualitative and the quantitative points of view was
taken in Keye Martin’s Ph.D. thesis [65] and subsequent publications [66, 67, 69]. Martin
introduced a simple notion of measurement on domains. In its most concrete form, a mea-
surement assigns real numbers to domain elements, which can be said to measure the degree
of undefinedness or uncertainty of the element. Thus the maximal elements, which can be
regarded as having perfect information, will have measurement 0. The axioms for measure-
ments, while quite simple and intuitive, tie the quantitative notion in with the qualitative
domain structure in a very rich way. Just to mention some of the highlights:

• There is a rich theory of fixpoints which applies to increasing, but not necessarily mono-
tonic, functions on domains. This is already a remarkable departure from ‘classical’
domain theory, in which monotonicity is always assumed. However, Martin shows that
there are compelling natural examples, such as interval bisection, which require this
broader framework. Not only are there existence and uniqueness theorems for fixpoints
in this frameworks, but also novel induction principles.

• As the previous point suggests, there is a move away from the use of domain theory
to model purely extensional aspects of computation, and towards using it to capture
important features of computational processes. This leads to a notion of ‘informatic
derivative’ which can be used to gain information about the rate of convergence of a
computational process.

• A notable aspect of this development is the unified basis on which it puts the study of
both discrete and continuous (e.g. real-number) computation.

It is also important that there are many natural examples of measurement covering most
of the domains standardly arising as data-types for computation, including the domain of
intervals (for real-number computation); finite lists and other standard finite data-structures;
streams; partial functions on the natural numbers; and both non-deterministic and proba-
bilistic powerdomains.

However, the example which has really revealed the possibilities of this framework has
only appeared recently, and is a major development in its own right.

3.3 Combining Scott Information and Shannon Information

Recently, Bob Coecke and Keye Martin have produced a very interesting construction which
can be seen as a first step towards a unification of these two theories of information [34]. The
problem which they attacked can be formulated as follows. Consider the set of probability
distributions on a finite set. For an n-element set, these are the “classical n-states” of Physics:

∆n := {x ∈ [0, 1]n :
n∑

i=1

xi = 1}.

This is the setting in which Shannon entropy, the fundamental quantitative notion in classical
Information Theory, is defined. It assigns a number, the ‘expected information’, to each
classical state. The question is: can we place a partial order on ∆n such that:

1. This partial order forms a domain.

20



2. Shannon entropy is a measurement with respect to this domain.

3. The order extends to quantum states (density operators).

These are highly non-trivial requirements to satisfy. Note that the set of probability distri-
butions on a 3-element set, seen as a subset of Euclidean space, form a (solid) triangle, and
in general those on a n-element set form an n-simplex. The distribution corresponding to
maximum uncertainty is the uniform distribution, with each point assigned probability 1/n
— geometrically, the barycenter of the simplex; while the maximal elements, corresponding
to perfect information, are the pure states assigning probability 1 to one element, and 0 to
all others — geometrically, the vertices of the simplex. This geometrical aspect brings a
rich mathematical structure to this example which seems different to anything previously
encountered in Domain theory.

Note also the contrast with previous work on the probabilistic powerdomain [57]. Clas-
sical probability distributions are maximal elements in the probabilistic powerdomain; non-
standard elements (valuations) are introduced which provide approximations to measures,
but the order restricted to the measures themselves is discrete. By contrast, we are seeking a
rich informatic structure on the standard objects of probability (distributions) and quantum
mechanics (density operators) themselves, without introducing any non-standard elements. It
is by no means a priori obvious that this can be done at all; once we see that it can, many
new possibilities will unfold.

A classical state x ∈ ∆n is pure when xi = 1 for some i ∈ {1, . . . , n}; we denote such a
state by ei. Pure states {ei}i are the actual states a system can be in, while general mixed
states x and y are epistemic entities.

If we know x and by some means determine that outcome i is not possible, our knowledge
improves to

pi(x) =
1

1 − xi

(x1, . . . , x̂i, . . . , xn+1) ∈ ∆n,

where pi(x) is obtained by first removing xi from x and then renormalizing. The partial
mappings which result,

pi : ∆n+1 ⇀ ∆n

with dom(pi) = ∆n+1 \ {ei}, are called the Bayesian projections and lead one directly to the
following relation on classical states.

Definition 3.1 For x, y ∈ ∆n+1,

x ⊑ y ≡ (∀i)(x, y ∈ dom(pi) ⇒ pi(x) ⊑ pi(y)). (2)

For x, y ∈ ∆2,
x ⊑ y ≡ (y1 ≤ x1 ≤ 1/2) or (1/2 ≤ x1 ≤ y1) . (3)

The relation ⊑ on ∆n is called the Bayesian order.

See [34] for motivation and results showing that the order on ∆2 is uniquely determined under
minimal assumptions.

The key result is:

Theorem 3.2 (∆n,⊑) is a domain with maximal elements

max(∆n) = {ei : 1 ≤ i ≤ n}

21



and least element ⊥ := (1/n, . . . , 1/n). Moreover, Shannon entropy

µx = −
n∑

i=1

xi log xi

is a measurement of type ∆n → [0,∞)∗.

The Bayesian order can also be described in a more direct manner, the symmetric char-
acterization. Let S(n) denote the group of permutations on {1, . . . , n}, and

Λn := {x ∈ ∆n : (∀i < n)xi ≥ xi+1}

the collection of monotone classical states.

Theorem 3.3 For x, y ∈ ∆n, we have x ⊑ y iff there is a permutation σ ∈ S(n) such that
x · σ, y · σ ∈ Λn and

(x · σ)i(y · σ)i+1 ≤ (x · σ)i+1(y · σ)i

for all i with 1 ≤ i < n.

Thus, the Bayesian order is order isomorphic to n! many copies of Λn identified along
their common boundaries. This fact, together with the pictures of ↑x at representative states
x in Figure 1, will give the reader a good feel for the geometric nature of the Bayesian order.

Figure 1: Pictures of ↑x for x ∈ ∆3.

3.4 The Quantum Case

The real force of the construction for classical states becomes apparent in the further devel-
opment in [34], to show that it can be lifted to analogous constructions for quantum states.
Here, rather than probability distributions on finite sets, one is looking at mixed states on
finite-dimensional Hilbert spaces. Let Hn denote an n-dimensional complex Hilbert space. A
quantum state is a density operator ρ : Hn → Hn, i.e., a self-adjoint, positive, linear operator
with tr(ρ) = 1. The quantum states on Hn are denoted Ωn. A quantum state ρ on Hn is pure
if

spec(ρ) ⊆ {0, 1}.

The set of pure states is denoted Σn. They are in bijective correspondence with the one
dimensional subspaces of Hn. Classical states are distributions on the set of pure states
max(∆n). By Gleason’s theorem [48], an analogous result holds for quantum states: Density
operators encode distributions on Σn.

22



If our knowledge about the state of a system is represented by density operator ρ, then
quantum mechanics predicts the probability that a measurement of observable e yields the
value λ ∈ spec(e). It is

pr(ρ→ eλ) := tr(pλ
e · ρ),

where pλ
e is the projection corresponding to eigenvalue λ and eλ is its associated eigenspace

in the spectral representation of e.
Let e be an observable on Hn with spec(e) = {1, . . . , n}. For a quantum state ρ on Ωn,

spec(ρ|e) := (pr(ρ→ e1), . . . ,pr(ρ→ en)) ∈ ∆n.

So what does it mean to say that we have more information about the system when we
have σ ∈ Ωn than when we have ρ ∈ Ωn? It means that there is an experiment e which
(a) serves as a physical realization of the knowledge each state imparts to us, and (b) that
we have a better chance of predicting the result of e from state σ than we do from state
ρ. Formally, (a) means that spec(ρ) = Im(spec(ρ|e)) and spec(σ) = Im(spec(σ|e)), which is
equivalent to requiring [ρ, e] = 0 and [σ, e] = 0, where [a, b] = ab − ba is the commutator of
operators.

Definition 3.4 Let n ≥ 2. For quantum states ρ, σ ∈ Ωn, we have ρ ⊑ σ iff there is an
observable e : Hn → Hn such that [ρ, e] = [σ, e] = 0 and spec(ρ|e) ⊑ spec(σ|e) in ∆n.

Theorem 3.5 (Ωn,⊑) is a domain with maximal elements

max(Ωn) = Σn

and least element ⊥ = I/n, where I is the identity matrix. Moreover, von Neumann entropy

σρ = −tr(ρ log ρ)

is a measurement of type Ωn → [0,∞)∗.

This order can be characterized in a similar fashion to the Bayesian order ∆n, in terms of
symmetries and projections. In its symmetric formulation, unitary operators on Hn take the
place of permutations on {1, . . . , n}, while the projective formulation of (Ωn,⊑) shows that
each classical projection pi : ∆n+1 ⇀ ∆n is actually the restriction of a special quantum
projection Ωn+1 ⇀ Ωn.

3.5 The Logics of Birkhoff and von Neumann

Quantum Logic in the sense of Birkhoff and von Neumann [32] consists of the propositions one
can make about a physical system. Each proposition takes the form “The value of observable
e is contained in E ⊆ spec(e).” For classical systems, the logic is P{1, . . . , n}, while for
quantum systems it is L

n, the lattice of (closed) subspaces of Hn. In each case, implication
of propositions is captured by inclusion, and a fundamental distinction between classical
and quantum — that there are pairs of quantum observables whose exact values cannot be
simultaneously measured at a single moment in time — finds lattice theoretic expression:
P{1, . . . , n} is distributive; L

n is not.
The classical and quantum logics can be derived from the Bayesian and spectral orders

using the same order theoretic construction.

23



Definition 3.6 An element x of a dcpo D is irreducible when

∧

(↑x ∩ max(D)) = x

The set of irreducible elements in D is written Ir(D).

The order dual of a poset (D,⊑D) is written D∗; its order is x ⊑ y ⇔ y ⊑D x.
The following result is proved in [33].

Theorem 3.7 For n ≥ 2, the classical lattices arise as

Ir(∆n)∗ ≃ P{1, . . . , n} \ {∅},

and the quantum lattices arise as

Ir(Ωn)∗ ≃ L
n \ {0}.

Figure 2: The irreducibles of ∆3 with the corresponding Hasse diagram.

3.6 Discussion

The foregoing development has been quite technical, but the underlying programme which
these ideas illustrate has a clear conceptual interest. The broad agenda of developing a unified
quantitative/qualitiative theory of information, applicable to a wide range of situations in logic
and computation, is highly attractive, and likely to lead to new perspectives on information
in general.

Our discussion thus far has largely been couched in terms of static theories, although
we have already hinted at the importance of agents and explicit dynamics. We now turn to
interactive models of logic and computation.

4 Games, Logical Equilibria and Conservation of Information

Flow

In this Section and the next, we shall discuss some dynamical theories of computation which
are explicitly based on interaction between agents, and which expose a structure of informa-
tion flow which is both geometrical and logical in character. These theories, which go under
the names of Game Semantics and Geometry of Interaction, have played a considerable rôle
in recent work on the semantics both of programming languages, and of logical proofs.

24



Figure 3: Computing “in the isolation ward”.

4.1 Changing Views of Computation

To set the scene, we begin by recalling how perspectives on computation have changed since
the first computers appeared. The early practice of computing can be pictured as in Figure
3. This is the era of stand-alone machines and programs: computers are served by an elite
priesthood, and have only a narrow input-output interface with the rest of the world.

First-generation models of computation Given this limited vision of computing, there
is a very natural abstraction of computation, in which programs are seen as computing func-
tions or relations from inputs to outputs.3

Computation
Input Data Output

These models live on the existing intellectual inheritance from discrete mathematics and logic.
Time and processes lurk in the background, but are largely suppressed.

Computation in the Age of the Internet As we know, the technology has changed
dramatically. Even a conventional Distributed Systems picture, as illustrated in Figure 4,
which has been common-place for the last 20 years, tells a very different story. We have
witnessed the progression

multitasking → distributed systems → Internet → “mobile” and “global” computing

Key features of this unfolding new computational universe include: agents interacting with
each other, and information flowing around the system.

The insufficiency of the first-generation models of computation for this new computational
environment is evident:

What does the Internet compute?

3This is the exactly the point of view on which, as we have seen, Dynamic Logic is based.

25



Figure 4: Distributed Computing

Surely not a mathematical function . . .
The old concepts fail to match the modern world of computing and its concerns:

Robustness in the presence of failures.

Atomicity of transactions.

Security of information flows.

Quality of user interface.

Quantitative aspects.

Processes vs. Products We see a shift in emphasis and importance between How we
compute vs. What we compute. Processes were in the background, but now come to the fore:
the “how” becomes the new “what”.

This leads ineluctably to the need for Second-generation models of computation, and
in particular Process Models such as Petri nets, Process Algebra, etc. Whereas 1st-generation
models lived off the intellectual inheritance from mathematics and logic, there is no adequate
pre-existing theory of processes or agents, interaction, and information flow, as we see by
considering the following questions (some of which have already been mentioned in Section 2):

• What is computed?

• What is a process?

26



• What are the analogues to Turing-completeness, universality?

There are indeed a plethora of models, but no definitive conceptual analysis, comparable to
Turing’s analysis of computation in its “classical” sense. —Not least, perhaps, because it is
indeed a harder problem!

4.2 Some New Perspectives

Instead of isolated systems, with rudimentary interactions with their environment, the stan-
dard unit of description or design becomes a process or agent, the essence of whose behaviour
is how it interacts with its environment.

Who is the System? Who is the Environment? This depends on point of view. We may
designate some agent or group of agents as the System currently under consideration, with
everything else as the Environment; but it is always possible to contemplate a rôle interchange,
in which the Environment becomes the System and vice versa. (This is, of course, one of the
great devices, and imaginative functions, of creative literature). This symmetry between
System and Environment carries a first clue that there is some structure here; it will lead us
to a key duality, and a deep connection to logic.

4.3 Interaction

Complex behaviour arises as the global effect of a system of interacting agents (or processes).
The key building block is the agent. The key operation is interaction – plugging agents

together so that they interact with each other

This conceptual model works at all “scales” :

• Macro-scale: processes in operating systems, software agents on the Internet, transac-
tions.

• Micro-scale: how programs are implemented (subroutine call-return protocols, register
transfer) all the way down into hardware.

It is applicable both to design (synthesis) and to description (analysis); to artificial and to
natural information-processing systems.

There are of course large issues lurking here, e.g. in the realm of “Complex Systems”:
emergent behaviour and even intelligence. Is is helpful, or even feasible, to understand this
complexity compositionally? We need new conceptual tools, new theories, to help us analyze
and synthesize these systems, to help us to understand and to build.

27



4.4 Towards a “Logic of Interaction”

Specifying and reasoning about the behaviour of computer programs takes us into the realm
of logic. For the first-generation models, logic could be taken “as it was”—static and time-
less. For our second-generation models, getting an adequate account—a genuine “logic of
interaction”—may require a fundamental reconceptualization of logic itself. This radical re-
vision of our view of logic is happening anyway—prompted partly by the applications, and
partly by ideas arising within logic.

4.4.1 The Static Conception of Logic

We provide an unfair caricature of the standard logical idea of tautology to make our point.
The usual “static” notion of tautology is as “a statement which is vacuously true because it
is compatible with all states of affairs”.

A ∨ ¬A

“It is raining or it is not raining”—truth-functional semantics. This is illustrated (subver-
sively) in Figure 5. But what could a dynamic notion of tautology look like?

Figure 5: Tertium non datur?

4.4.2 The Copy-Cat Strategy

We begin with a little fable:

28



How to beat an International Chess Grandmaster by the power of pure logic.

Since we are relying on logic, rather than on any talent at Chess, we proceed as follows. We
arrange to play two games of Chess with the grandmaster, say Gary Kasparov, once as White
and once as Black. Moreover, we so arrange matters that we start with the game in which
we play as Black. Kasparov makes his opening move; we respond by playing the same move
in the other game—this makes sense, since we are playing as White there. Now Kasparov
responds (as Black) to our move in that game; and we copy that response back in the first
game. We simply proceed in this fashion, copying the moves that our opponent makes in one
board to the other board. The net effect is that we play the same game twice—once as White,
and once as Black. (We have essentially made Kasparov play against himself). Thus, whoever
wins that game, we can claim a win in one of our games against Kasparov! (Even if the game
results in a stale-mate, we have done as well as Kasparov over the two games—surely still a
good result!)4

Of course, this idea has nothing particularly to do with Chess. It can be applied to any
two-person game of a very general form. We shall continue to use Chess-boards to illustrate
our discussion, but this underlying generality should be kept in mind.

What are the salient features which can be extracted from this example?

A dynamic tautology There is a sense (which will shortly be made more precise) in which
the copy-cat strategy can be seen as a dynamic version of the tautology A∨¬A. Note,
indeed, that an essential condition for being able to play the copy-cat is that the rôles of
the two players are inter-changed on one board as compared to the other. Note also the
disjunctive quality of the argument that we must win in one or other of the two games.
But the copy-cat strategy is a dynamic process: a two-way channel which maintains the
correlation between the plays in the two games.

4Our fable is actually recorded as having happened at least once in the chronicles of Chess. Two players
conspired to play this copy-cat strategy against Alekhine in the 1920’s. Alekhine realized what was happening,
and made a tempting offer of a sacrifice to one of his opponents. That opponent was not able to resist such
a coup against the great Alekhine, and departed from the copy-cat strategy to swallow the bait. Then the
symmetry was broken, and Alekhine was able to win easily in both games. Thus we are reminded of the
familiar truth, that logic rarely prevails over psychology in “real life”.

29



Conservation of information flow The copy-cat strategy does not create any information;
it reacts to the environment in such a way that information is conserved. It ensures that
exactly the same information flows out to the environment as flows in from it. Thus
one gets a sense of logic appearing in the form of conservation laws for information
dynamics.

The power of copying Another theme which appears here, and which we will see more of
later, concerns the surprising power of simple processes of copying information from one
place to another. Indeed, as we shall eventually see, such processes are computationally
universal.

The geometry of information flow From a dynamical point of view, the copy-cat strat-
egy realizes a channel between the two game boards, by performing the actions of
copying moves. But there is also some implicit geometry here. Indeed, the very idea of
two boards laid out side by side appeals to some basic underlying spatial structure. In
these terms, the copy-cat channel can also be understood geometrically, as creating a
graphical link between these two spatial locations.These two points of view are comple-
mentary, and link the logical perspective to powerful ideas arising in modern geometry
and mathematical physics.

To provide further evidence that the copy-cat strategy embodies more substantial ideas than
might at first be apparent, we consider varying the scenario. Consider now the case where
we play against Kasparov on three boards; one as Black, two as White.

Kasparov Kasparov Kasparov

B

W

W

B

W

B

·

PPPPPPPPPPPPP

nnnnnnnnnnnnnn

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Does the Copy-Cat strategy still work here? In fact, we can easily see that it does not.
Suppose Kasparov makes an opening move m1 in the left-hand board where he plays as
White; we copy it to the board where we play as White; he responds with m2; and we copy
m2 back to the board where Kasparov opened. So far, all has proceeded as in our original
scenario. But now Kasparov has the option of playing a different opening move, m3 say,
in the rightmost board. We have no idea how to respond to this move; nor can we copy it
anywhere, since the board where we play as White is already “in use”. This shows that these
simple ideas already lead us naturally to the setting of a resource-sensitive logic, in which in
particular the Contraction Rule, which can be expressed as A → A ∧ A (or equivalently as
¬A ∨ (A ∧A)) cannot be assumed to be valid.

30



What about the other obvious variation, where we play on two boards as White, and one
as Black?

Kasparov Kasparov Kasparov

B

W

B

W

W

B

·

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

PPPPPPPPPPPPP

nnnnnnnnnnnnnn

It seems that the copy-cat strategy does still work here, since we can simply ignore one of
the boards where we play as White. However, a geometrical property of the original copy-cat
strategy has been lost, namely a connectedness property, that information flows to every part
of the system. This at least calls the corresponding logical principle of Weakening, which can
be expressed as A ∧A→ A, (or equivalently as ¬A ∨ ¬A ∨A) into question.

We see from these remarks that we are close to the realm of Linear Logic and its variants;
and, mathematically, to the world of monoidal (rather than cartesian) categories.

4.4.3 Game Semantics

These ideas find formal expression in Game Semantics. Games play the role of:

• Interface types for computation modules

• Propositions with dynamic content.

In particular, 2-person games capture the duality of:

• Player vs. Opponent

• System vs. Environment.

Agents are strategies In this setting, we model our agents or processes as strategies for
playing the game. These strategies interact by playing against each other. We obtain a notion
of correctness which is logical in character in terms of the idea of winning strategy—one which
is guaranteed to reach a successful outcome however the environment behaves. This in a sense
replaces (or better, refines) the logical notion of “truth”: winning strategies are our dynamic
version of tautologies (more accurately, of proofs).

Building complex systems by combining games We shall now see how games can be
combined to produce more complex behaviours while retaining control over the interface. This
provides a basis for the compositional understanding of our systems of interacting agents—
understanding the behaviour of a complex system in terms of the behaviour of its parts.
This is crucial for both analysis and synthesis, i.e. for both description and design. These
operations for building games can be seen as (dynamic forms of) “type constructors” or
“logical connectives”. (The underlying logic here will in fact be Linear Logic).

31



Duality—“Linear Negation” A⊥ — interchange rôles of Player and Opponent (reflecting
the symmetry of interaction).

Note that, with this interpretation, negation is involutive:

A⊥⊥ = A.

Tensor — “Linear conjunction”

A⊗B

The idea here is that we combine the two game boards into one system, without any informa-
tion flow between the two sub-systems. (This is the significance of the “wall” separating our
two players, who we shall refer to as Gary (Kasparov) and Nigel (Short)). This connective
has a conjunctive quality, since we must independently be able to play (and to win) in each
conjunct. Note however, that there is no constraint on information flow for the environment,
as it plays against this compound system.

Par — “Linear disjunction”

32



AOB

In this case, we have two boards, but one player (who we refer to as the Copy-Cat), indicating
that we do allow information flow for this player between the two game boards. This for
example allows information revealed in one game board by the Opponent to be used against
him on the other game board—as exemplified by the copy-cat strategy. However, note that the
wall appears on the environment’s side now, indicating that the environment is constrained
to play separately on the two boards, with no communication between them.

Thus we have a De Morgan duality between these two connectives, mediated by the Linear
negation:

(A⊗B)⊥ = A⊥OB⊥

(AOB)⊥ = A⊥ ⊗B⊥

The idea is that on one side of the mirror of duality (Player/System for the Tensor, Oppo-
nent/Environment for the Par), we have the constraint of no information flow, while on the
other side, we do have information flow.

We can now reconstrue the Copy-Cat strategy in logical terms:

Kasparov Short

We see that it is indeed a winning strategy for A⊥OA. Moreover, we can define A ⊸ B
(“Linear implication”) by

A ⊸ B ≡ A⊥OB

(cf. A ⊃ B ≡ ¬A∨B.) The information flow possibilities of Par receive a more familiar logical
interpretation in terms of the Linear implication; namely, that we can use information about
the antecedent in proving the consequent (and conversely with respect to their negations, if
we think of proof by contraposition).

Thus an entire “linearized” logical structure opens up before us, with a natural interpre-
tation in terms of the dynamics of information flow.

33



4.4.4 Interaction

We now turn to a key step in the development: the modelling of interaction itself. Construc-
tors create “potentials” for interaction; the operation of plugging modules together so that
they can communicate with each other releases this potential into actual computation.

A⊥OB ≡ A ⊸ B B⊥OC ≡ B ⊸ C

Here we see two separate sub-systems, each with a compound structure, expressed by the
logical types of their interfaces. What these types tell us is that these systems are composable;
in particular, the output type of the first system, namely B, matches the input type of the
second system. Note that this “logical plug-compatibility” makes essential use of the duality,
just as the copy-cat strategy did. What makes Gary (the player for the first system) a
fit partner for interaction with Nigel (the player for the second system), is that they have
complementary views of their locus of interaction, namely B. Gary will play in this type
“positively”, as Player (he sees it as B), while Nigel will play “negatively”, as Opponent (he
sees it as B⊥). Thus each will become part of the environment of the other—part of the
potential environment of each will be realized by the other, and hence part of the potential
behaviour of each will become actual interaction.

This leads to a dynamical interpretation of the fundamental operation of composition, in
mathematical terms:

A
Gary - B

Nigel - C

A
Gary;Nigel - C

or of the Cut rule, in logical terms:

Cut:
⊢ Γ, A ⊢ A⊥,∆

Γ,∆

. . .

∆Γ

. . .

A⊥A

QP

Composition as Interaction

34



The Interaction Game

The picture here shows the new system formed by plugging together the two sub-systems.
The “external interface” to the environment now shows just the left hand board A as input,
and the right hand board C as output. The Cut formula B is hidden from the environment,
and becomes the locus of interaction inside the black box of the system. Suppose that the
Environment makes some move m in C. This is visible only to Nigel, who as a strategy for
B ⊸ C has a response. Suppose this response m1 is in B. This is a move by Nigel as Player
in B⊥, hence appears to Gary as a move by Opponent in B. Gary as a strategy for A ⊸ B
has a response m2 to this move. If this response is again in B, Nigel sees it as a response
by the environment to his move, and will have a response again; and so on. We thus have a
sequence of moves m1, . . . ,mk in B, ping-ponging back and forth between Nigel and Gary. If,
eventually, Nigel responds to Gary’s last move by playing in C, or Gary responds to Nigel’s
last move by playing in A, then we have the response of the composed strategy Gary;Nigel to
the original move m. Indeed, all that is visible to the Environment is that it played m, and
eventually some response appeared, in A or C.

Moreover, if both Nigel and Gary are winning strategies, then so is the composed strategy;
and the composed strategy will not get stuck forever in the internal ping-pong in B. To see
this, suppose for a contradiction that it did in fact get stuck in B. Then we would have an
infinite play in B following the winning strategy Gary for Player in B, and the same infinite
play following the winning strategy Nigel for Player in B⊥, hence for Opponent in B. This
yields the desired contradiction.

4.5 Discussion

Game Semantics in the sense discussed in this section has had an extensive development over
the past decade, with a wealth of applications to the semantics of programming languages,
type theories and logics [15, 16, 20, 21, 19, 22, 23, 56]. More recently, there has been an
algorithmic turn, and some striking applications to verification and program analysis [39, 4,
9, 73].

From the point of view of the general analysis of Information, we see the following promis-
ing lines of development:

• Game semantics provides a promising arena for exploring the combination of quanti-
tative and qualitative theories of information, as discussed in Section 3, but now in a

35



dynamic setting. In particular, it provides a setting for quantifying information flow
between agents. We would like to ask quantitative questions about rate of information
flow through a strategy (representing a program, or a proof), how can a system gain
maximum information from its environment while providing minimal information in
return, robustness in the presence of noise, etc.

• As we saw in our discussion of the copy-cat strategy, there is an intuition of logi-
cal principles arising as conservation laws for information flow. (And indeed, in the
case of Multiplicative Linear Logic, the proofs correspond exactly to “generalized copy-
cat strategies”). Can we develop this intuition into a fully-fledged theory? Can we
characterize logical principles as those expressing the conservation principles of this
information flow dynamics?

• There is also the hope that the more structured setting of game semantics will constrain
the exuberant variety of possibilities offered by process algebra, and allow a sharper ex-
ploration of the logical space of possibilities for information dynamics. This has already
been borne out in part, by the success of game semantics in exploring the space of pro-
gramming language semantics. It has been possible to give crisp characterizations of the
“shapes” of computations carried out within certain programming disciplines: including
purely functional programming [16, 56], stateful programming [20, 21], general references
[12], programming with non-local jumps and exceptions [59, 61], non-determinism [51],
probability [37], concurrency [40, 41], names [10], polymorphism [55, 17] and more. See
[22] for an overview (now rather out of date).

There has also been a parallel line of development of giving full completeness results for
a range of logics and type theories, characterizing the “space of proofs” for a logic in
terms of informatic or geometric constraints which pick out those processes which are
proofs for that logic [15, 23]. This allows a new look at such issues as the boundaries
between classical and constructive logic, or the fine structure of polymorphism and
second-order quantification.

• This also gives some grounds for optimism that we can capture—in a “machine-independent”,
and moreover “geometrical”, non-inductive way—what computational processes are,
without referring back to Turing machines or any other explicit machine model.

• In the same spirit as for computability, can we characterize polynomial-time computation
and other complexity classes in such terms?

5 Emergent Logic: The Geometry of Information Flow

Game Semantics carries many vivid intuitions arising from our experiences of game-playing
as a human activity. We were able to take advantage of this in the previous section to explain
some key ideas without resorting to any explicit formalization. We now turn to a related
but somewhat different development of interactive models for logic and computation, known
loosely as “Geometry of Interaction particle-style models”.5 We will use this setting to carry
forward our discussion of dynamic models for information flow, with particular emphasis on
the following themes:

5See [44, 45, 46, 64, 35, 36], and [14, 15, 2, 3, 13, 11].

36



• Firstly, the model or family of models we shall discuss is technically simpler to formalize
mathematically than Game Semantics, although also less cloaked in familiar intuitions.
Thus we can introduce some more precision into our discussion without unduly taxing
the reader.

• Secondly, the simple yet expressive nature of these models is itself of conceptual interest.
They show how logic and computation can be understood in terms of simple processes
of copying information from one “place” to another, generalizing what we have already
seen of the copy-cat strategy. In fact, we shall see that mere copying is computationally
universal. Moreover, models of logics and type theories arise from these models; because
of the simplicity of the models, we may reasonably speak of emergent logic—where,
as discussed in the previous section, we may think of the logical character of certain
principles as arising from the fact that they express conservation laws of information
flow.

• We will also be able to make visible how geometrical structure unfolds in these models,
in a striking and unexpected fashion. This part of the development can be carried much
further than we can describe here; there is a thread of ideas linking logical processes of
cut-elimination to diagram algebras, knot theory and topological quantum field theory.

• We shall also begin to see the beginnings of links between Logic and Physics. The
processes we shall describe will be reversible in a very strong sense. This link can in
fact be carried much further, and the same kind of structures we are discussing here can
be used to axiomatize Quantum Mechanics, and to give an incisive analysis of quantum
entanglement and information flow.

5.1 Background: Combinatory Logic

It will be convenient to work in the setting of Combinatory Logic, which provides one of
the simplest of all the formulations of computability—and moreover one which is purely
algebraic. Combinatory Logic is also the basis for realizability constructions, which provide
powerful methods for building extensional models of strong impredicative type theories and
higher-order logics.

We recall that combinatory logic is the algebraic theory CL given by the signature with
one binary operation (application) written as an infix · , and two constants S and K, subject
to the equations

K · x · y = x
S · x · y · z = x · z · (y · z)

(application associates to the left, so x ·y ·z = (x ·y) ·z). Note that we can define I ≡ S ·K ·K,
and verify that I · x = x.

The key fact about the combinators is that they are functionally complete, i.e. they
can simulate the effect of λ-abstraction. Specifically, we can define bracket abstraction on
combinatory terms built using a set of variables X:

λ∗x.M = K ·M (x 6∈ FV(M))
λ∗x. x = I
λ∗x.M ·N = S · (λ∗x.M) · (λ∗x.N)

Moreover (Theorem 2.15 in [53]):

CL ⊢ (λ∗x.M) ·N = M [N/x].

37



The B combinator can be defined by bracket abstraction from its defining equation:

B · x · y · z = x · (y · z).

The combinatory Church numerals are then defined by

n̄ ≡ (S · B)n · (K · I)

where we define
an · b = a · (a · · · (a · b) · · · ).

A partial function φ : N ⇀ N is numeralwise represented by a combinatory term M ∈ TCL if
for all n ∈ N, if φ(n) is defined and equal to m, then

CL ⊢M · n̄ = m̄

and if φ(n) is undefined, then M · n̄ has no normal form.
The basic result on computational universality of CL is then the following (Theorem 4.18 in
[53]):

Theorem 5.1 The partial functions numeralwise representable in CL are exactly the partial
recursive functions.

Principal Types of Combinators Curry observed that the principal (i.e. the most gen-
eral) types of the combinators corresponded to axiom schemes for a Hilbert-style proof system
for Intuitionistic implicational logic—with the application operation corresponding to Modus
Ponens. This is the “Curry” part of the Curry-Howard isomorphism. Thus combinators are
to Hilbert-style systems as λ-calculus is to Natural Deduction.

These principal types can be computed by the Hindley-Milner algorithm [52] from the
defining equations for the combinators:

K : α→ (β → α)
S : (α→ β → γ) → (α→ β) → (α→ γ).

The Curry Combinators Curry’s original set of combinators was not the Schönfinkel
combinators S and K, but rather the combinators B, C, K, and W:

B · x · y · z = x · (y · z)
C · x · y · z = x · z · y
W · x · y = x · y · y

These combinators are equivalent to the Schönfinkel combinators, in the sense that the two
sets are inter-definable [28, 53]. In particular, S can be defined from B, C, I and W. They
have the following principal types:

I : α→ α Axiom
B : (β → γ) → (α→ β) → α→ γ Cut
C : (α→ β → γ) → β → α→ γ Exchange
K : α→ β → α Weakening
W : (α→ α→ β) → α→ β Contraction

Thus we see that in logical terms, B expresses the transitivity of implication, or the Cut
rule; C is the Exchange rule; W is Contraction; and K is Weakening. Curry’s analysis of
substitution is close to Gentzen’s analysis of proofs.

38



5.2 Linear Combinatory Logic

We shall now present another system of combinatory logic: Linear Combinatory Logic [3,
11, 13]. This can be seen as a finer-grained system into which standard combinatory logic,
as presented in the previous section, can be interpreted. By exposing some finer structure,
Linear Combinatory Logic offers a more accessible and insightful path towards our goal of
mapping universal functional computation into a simple model of computation as copying.

Linear Combinatory Logic can be seen as the combinatory analogue of Linear Logic [43];
the interpretation of standard Combinatory Logic into Linear Combinatory Logic corresponds
to the interpretation of Intuitionistic Logic into Linear Logic. Note, however, that the com-
binatory systems we are considering are type-free and “logic-free” (i.e. purely equational).

Definition 5.2 A Linear Combinatory Algebra (A, ·, !) consists of the following data:

• An applicative structure (A, ·)

• A unary operator ! : A→ A

• Distinguished elements B, C, I, K, D, δ, F, W of A

satisfying the following identities (we associate · to the left and write x · !y for x · ( !(y)), etc.)
for all variables x, y, z ranging over A):

1. B · x · y · z = x · (y · z) Composition/Cut
2. C · x · y · z = (x · z) · y Exchange
3. I · x = x Identity
4. K · x · !y = x Weakening
5. D · !x = x Dereliction
6. δ · !x = ! !x Comultiplication
7. F · !x · !y = !(x · y) Monoidal Functoriality
8. W · x · !y = x · !y · !y Contraction

The notion of LCA corresponds to a Hilbert style axiomatization of the {!,⊸} fragment
of linear logic [3, 26, 76]. The principal types of the combinators correspond to the axiom
schemes which they name. They can be computed by a Hindley-Milner style algorithm [52]
from the above equations:

1. B : (β ⊸ γ) ⊸ (α ⊸ β) ⊸ α ⊸ γ
2. C : (α ⊸ β ⊸ γ) ⊸ (β ⊸ α ⊸ γ)
3. I : α ⊸ α
4. K : α ⊸ !β ⊸ α
5. D : !α ⊸ α
6. δ : !α ⊸ ! !α
7. F : !(α ⊸ β) ⊸ !α ⊸ !β
8. W : ( !α ⊸ !α ⊸ β) ⊸ !α ⊸ β

Here ⊸ is a linear function type (linearity means that the argument is used exactly once),
and !α allows arbitrary copying of an object of type α.

A Standard Combinatory Algebra consists of a pair (A, ·s) where A is a nonempty set and
·s is a binary operation on A, together with distinguished elements Bs,Cs, Is,Ks, and Ws of

39



A, satisfying the following identities for all x, y, z ranging over A:

1. Bs ·s x ·s y ·s z = x ·s (y ·s z)
2. Cs ·s x ·s y ·s z = (x ·s z) ·s y
3. Is ·s x = x
4. Ks ·s x ·s y = x
5. Ws ·s x ·s y = x ·s y ·s y

This is just a combinatory algebra with interpretations of the Curry combinators. Note that
this is equivalent to the more familiar definition of SK-combinatory algebra as discussed in
the previous sub-section.

Let (A, ·, !) be a linear combinatory algebra. We define a binary operation ·s on A as
follows: for a, b ∈ A, a ·s b ≡ a · !b. We define D′ ≡ C · (B ·B · I) · (B ·D · I). Note that

D′ · x · !y = x · y.

Now consider the following elements of A.

1. Bs ≡ C · (B · (B · B · B) · (D′ · I)) · (C · ((B ·B) ·F) · δ)
2. Cs ≡ D′ ·C
3. Is ≡ D′ · I
4. Ks ≡ D′ ·K
5. Ws ≡ D′ ·W

Theorem 5.3 Let (A, ·, !) be a linear combinatory algebra. Then (A, ·s) with ·s and the
elements Bs,Cs, Is,Ks,Ws as defined above is a standard combinatory algebra.

Finally, we mention a special case which will arise in our model. An Affine Combinatory
Algebra is a Linear Combinatory Algebra such that the K combinator satisfies the stronger
equation

K · x · y = x.

Note that in this case we can define the identity combinator: I ≡ C · K ·K.

5.3 A Linear Combinatory Algebra of Partial Involutions

Our aim is to describe an interactive model for logic and computation, which can be under-
stood in two complementary ways:

• A model built from simple dynamical processes of copying information from one place
to another.

• A model built from simple geometrical constructions, in which computation is inter-
preted as geometric simplification—tracing paths through tangles, and yanking them
straight.

We begin with the dynamical interpretation. Here we think of an informatic token or particle
traversing a path through logical (discrete) “space” and “time”. For this purpose, we assume
a set Pos of positions or places in “logical space”. For the purposes of obtaining a type-
free universal model of computation, it is important that Pos is (countably) infinite. (So we
could just take it to be the set N of natural numbers). The only significant property of the
instantaneous state of the particle is its current position p ∈ Pos.

40



The processes we shall consider will be very simple, “history-free” or “time-independent”
reversible dynamics, which we represent as partial injective functions

f : Pos ⇀ Pos.

Such a process maps a particle in position p at any time t to the position f(p) at time t+ 1;
or may be undefined. In fact, we will have no need to make time explicit, since discrete time
will be modelled adequately by function composition6 . Thus the path traced by the particle
starting from position p0 under the dynamics f will be

p0, p1, p2, . . . , pn, . . .

where pi+1 = f(pi). This dynamics is clearly reversible. Since f is a partial injective map, its
inverse f−1 (i.e. the relational converse of f) is also a partial injective function on Pos, and
pi = f−1(pi+1), so we can trace the reverse path using the inverse dynamics.

In fact, it will be possible to restrict ourselves to an even simpler class of dynamics: namely
the fixed-point free partial involutions, i.e. those partial injective functions f : Pos ⇀ Pos

satisfying
f = f−1, f ∩ 1Pos = ∅.

Thus such a map satisfies:

f(x) = y ⇐⇒ x = f(y), f(x) 6= x.

A partial involution on a set X is equivalently described as a partial partition of X into
2-element subsets:

X ⊇
⋃

E, where E = {{x, y} | f(x) = y}.

This defines an undirected graph Gf = (X,E). Clearly each vertex in this graph has at
most one incident edge. Conversely, every graph G = (X,E) with this property determines a
unique partial involution f on X, with Gf = G. It is somewhat remarkable that such simple
maps can form a universal computational model.

5.3.1 Function Application as Interaction

Our next and key step is to model functional application by interaction of these simple
dynamical processes. This will in fact be a bare-bones version of the game-theoretic model of
composition as interaction which we gave in the previous section. We shall view a “functional
process” which can be applied to other processes as a two-input two-output function

f

6It is also the case that the paths or orbits we are considering have no fixed origin, and should really be
considered as cyclic.

41



The interpretation of these two pairs of input-output lines is that the first will be used to
connect the functional process to its argument, and the second to connect it to its external en-
vironment or context—which will interact with the function to consume its output. Formally,
this is a function

f : Pos + Pos −→ Pos + Pos.

Note that we have the used the disjoint union (two copies of Pos) rather than the cartesian
product Pos × Pos (infinitely many copies of Pos). This is because a particle coming in as
input must either be on the first input line, or (in the exclusive sense) on the second input
line; and similarly for the outputs.

However, since we want to make a type-free universal model of computation, we must
reduce all our processes to one-input one-output functions. This is where our assumption
that Pos is infinite becomes important. It allows us to define a splitting function s:

s : Pos + Pos
∼=- Pos.

We can think of this as splitting logical space into two disjoint “address spaces”. This allows
us to transform any one-input/one-output function into a two-input/two-output function,
or conversely, by conjugation. Thus if f : Pos → Pos is any process, we can view it as a
two-input, two-output functional process, namely

s−1 ◦ f ◦ s : Pos + Pos −→ Pos + Pos.

5.3.2 Geometrical Representation of Application

Suppose we wish to apply f , qua functional process, to g, where both f and g are partial
involutions on Pos. The application operation f • g is indicated pictorially as follows.

?
Q

Q
Q

?
�

�
�f11

f12
f22

f21

? ?

?
f

?

? ?

p

s−1 ◦ f ◦ s

? ?f • g(p)
g

As already explained, we conjugate f by s to turn it into something with the right shape to
be a functional process. Then we connect it to its argument, g, by a feedback loop using the
first input and output lines of f ′ = s−1 ◦ f ◦ s. The residual behaviour by which the process
resulting from the application communicates with its environment uses the second input and
output lines. The full geometric significance of how this notion of application works will
become apparent when we discuss the interpretation of the combinators in this setting. But
we can give the dynamical interpretation of application immediately. Suppose the process f •g
receives a token p on its input. The function f ′ may immediately dispatch this to its second
output line as p′—in which case, that will be the response of f • g. This would correspond
to the behaviour of a constant function, which knows its output without consulting its input.
Otherwise, f ′ may dispatch p to its first output line, as p1. This is then fed as input to
g. Thus this corresponds to the function represented by f ′ interrogating its argument. If

42



g(p1) = p2, then this is fed back around the loop as input to f ′ (now on its first input line).
We may continue in this fashion, ping-ponging between f ′ (on its first input/output lines)
and g around the feedback loop. Eventually, f ′ may have seen enough, and decide to despatch
the token on its second output line, as p′. We then say that f • g(p) = p′. In other words, to
the external environment, the whole interaction between f ′ and g has been hidden inside the
black box of the application f • g; it only sees the final response p′ to the initial entry of the
token at p.

All of this should seem very familiar. It follows exactly the same general lines as the
game-semantical interpretation of composition which we presented in the previous section.
We note the following points of difference:

• The notion of composition we discussed in the previous section was fully symmetrical
between the two agents involved, reflecting the classical nature of the underlying logic.
Here, we are discussing functional computation, and our description of application re-
flects the asymmetry between function and argument.

• Since we are dealing with a type-free universal model of computation, we must allow
some partiality in our model. The token may get trapped in the feedback loop for ever,
for example, so the involutions giving the dynamics must be partial in general. This is
unavoidable, for well-known metamathematical reasons.

• We are also considering a very restricted, simple notion of dynamics here. Certainly in
the game semantics context, we would not want in general to limit ourselves to such a
restricted class of strategies.

5.3.3 Algebraic Description of Application

We now give a formal definition of the application operation. Firstly, consider the map
f ′ = s−1 ◦ f ◦ s : Pos + Pos −→ Pos + Pos. Each input lies in either the first component of
the disjoint union, or (exclusive or) the second, and similarly for the corresponding output.
This leads to a decomposition of f ′ into four disjoint partial maps fij, i, j ∈ {1, 2}, where fij

maps the i’th input summand to the j’th output summand. Note that f ′ can be recovered as
the union of these four maps. Since f ′ is a partial involution, these maps will also be partial
involutions. The decomposition is indicated pictorially in the preceding diagram. Now we
can define

f • g = f22 ∪ f21; g; (f11; g)
∗; f12 ,

where we use relational algebra (union R∪ S, relational composition R;S and reflexive tran-
sitive closure R∗) to write down formally exactly the information flow we described in our
informal explanation of application above. It is a nice exercise to show that partial involutions
are closed under application; that is, that f • g is again a partial involution.

5.4 Combinators as Partial Involutions

At this point, we have defined our applicative structure (A, •), where A is the set of partial
involutions. We must now show that we can define combinators as partial involutions such
that this structure will indeed form a Linear Combinatory Algebra. From now on, we shall
mainly resort to drawing pictures, rather than writing algebraic expressions.

43



5.4.1 The Identity Combinator

Our first example is the simplest, and yet already shows the essence of the matter. The
identity combinator I is represented by the twist map, which copies any token on its first
input line to the second output line, and vice versa. This is depicted as follows.

I

x

?
J
J

JJ

?









? ?

What is surprising, and striking, is the geometric picture of why this works: that is, why the
equation I • x = x holds:

? ?

? ?

Q
Q

Q
�

�
�

x
=

?
x

?
I • x = x

We see that geometrically, this is a matter of yanking the string straight ; while dynamically,
we picture the token flowing once around the feedback loop, and exiting exactly according to
x.

Once again, we can recognize this combinator as a new description of an old friend from
the previous section. This is exactly the copy-cat strategy! Reduced to its essence, it simply
copies “tokens” or “moves” from one place to another, and vice versa; the logical requirement
is that one of these places should be positive (or output); while the other should be negative
(or input).

5.4.2 The Composition Combinator

We now consider the composition combinator B. We interpret it as a combination of copy-
cats. That is, it plays copy-cat between three pairs of input and output lines. (Thus, in
particular, it is a partial involution).

44



B










J
J

JJ










J
J

JJ










J
J

JJ

? ? ? ? ? ?

z y
︷ ︸︸ ︷

x
︷ ︸︸ ︷

? ? ? ? ? ?

Note that we can regard this combinator as having six inputs and six outputs, as shown in
the diagram, simply by iterating the trick of conjugating it by the splitting map s. Our reason
for giving it this many inputs and outputs is based on the functionality of B, i.e. its principal
type. It expects to get three arguments, the first two of which will themselves be applied to
arguments, and hence should each have two inputs and two outputs.

Once again, the real insight as to how this combinator works will come from the geometry,
or equivalently the particle dynamics. We let the picture speak for itself.

z y x









J
J

JJ










J
J

JJ










J
J

JJ

? ? ? ? ? ?

? ? ? ? ? ?

z

y

x
? ?

? ??

?

B · x · y · z = x · (y · z)

5.4.3 Other Affine Combinators

The remaining Linear Combinators can be described in similar style. We simply show the
definition for C.

45



C

������










J
J

JJ

HHHHHH










J
J

JJ

? ? ? ? ? ?

z y x
︷ ︸︸ ︷

? ? ? ? ? ?

C · x · y · z = x · z · y

We note that geometrically, this is our first example of a non-planar combinator. This gives
a hint of the geometrical possibilities lurking just below the surface. We shall not pursue this
fascinating theme here for lack of space.

In fact, the algebra is naturally affine. We can define a K combinator:

K










J
J

JJ

? ? ?

? ? ?

y x

K · x · y = x

However, note that another geometric property is violated here; the first input and output
lines are disconnected from the information flow. (Recall our discussion of the second variation
of the Chess copy-cat scenario).

5.4.4 Duplication

We shall conclude our discussion of the algebra by sketching how explicit duplication of
arguments is handled. This is needed for full expressive power.

We define another auxiliary function

p : N × Pos
∼=- Pos

which splits logical space into countably many disjoint copies. Again, this requires the as-
sumption that Pos is infinite. Using this, we can define an operation !f which is intended to
produce infinitely many copies of f . These are obtained by simply tagging each copy with a
natural number, i.e. we define:

!f = p ◦ (1N × f) ◦ p−1.

We can then define W satisfying

W · x · !y = x · !y · !y.

46



The W combinator

W′

������

������

HHHHHH

HHHHHH










J
J

JJ

? ? ? ? ? ?

!y
︷ ︸︸ ︷

x
︷ ︸︸ ︷

? ? ? ? ? ?

(l.i, n) (r.j,m)

(i, n) (j,m)

. . . . . .

. . . . . .

This combinator can be understood as effecting a “translation between dialects”:

• x sees two arguments, each in many copies.

• !y provides one argument, in as many copies as needed.

The combinator in effect decomposes into infinitely many copy-cat strategies, using a suitable
splitting function to split the “address space” of the countably many copies of !y into two
infinite, disjoint parts, and copying between each of these and the corresponding argument
position of x.

5.5 Putting the Pieces Together

We can round out the descriptions of the combinators as partial involutions to obtain a Linear
Combinatory Algebra. By Theorem 5.3, this yields a standard Combinatory Algebra, and
hence by Theorem 5.1 a universal model of computation. Moreover, realizability constructions
over this Combinatory Algebra provide models for higher-order logics and type theories. Thus
we have fulfilled our programme for this Section, of exhibiting the power of copying, leading
to emergent models of logic and computation.

5.6 Discussion

Our gentle description of the partial involutions model in this section has merely indicated
some first steps in this topic. We list some further directions:

• There is a general axiomatic formulation of this construction in terms of traced monoidal
categories, with instances for deterministic, non-deterministic, probabilistic and quan-
tum interaction [2, 11].

• The connections with reversible computation have been mentioned; this topic is carried
further in [5].

• These models have some striking applications to the analysis of proofs, and of defin-
ability in various type theories, via Full Completeness theorems for models arising by
realizability constructions over the basic Geometry of Interaction models [13].

• Current work is showing that the suggestive connections with geometry can be carried
much further. In particular, there are connections with diagram algebras such as the
Temperley-Lieb algebra, and hence with the Jones polynomial and ensuing develop-
ments.

47



• Finally, as already mentioned, there are strong connections with Quantum Information
and Computation, which deserve a proper account of their own. Some references are
[6, 7, 8].

References

[1] S. Abramsky. Domain theory in logical form. Annals of Pure and Applied Logic 51, 1–77,
1991.

[2] S. Abramsky. Retracing some paths in process algebra. In Proceedings of CONCUR 96,
Lectures Notes in Computer Science Volume 1119, pp. 1–17, Springer-Verlag, 1996.

[3] S. Abramsky, Interaction, Combinators and Complexity. Lecture Notes, Siena, Italy,
1997.

[4] S. Abramsky. Algorithmic game semantics: a tutorial introduction. In: Proof and System-
Reliability, Kluwer, 2002.

[5] S. Abramsky. A structural approach to reversible computation. Theoretical Computer

Science vol. 347(3), 441–464, 2005.

[6] S. Abramsky and B. Coecke. Physical traces: classical vs. quantum information process-
ing. In Electronic Notes in Theoretical Computer Science, vol. 69, 2003, 1–26.

[7] S. Abramsky and B. Coecke, A Categorical Semantics of Quantum Protocols, in Proceed-
ings of the 19th Annual IEEE Symposium on Logic in Computer Science: LICS 2004,
IEEE Computer Society, 415–425, 2004.

[8] S. Abramsky and B. Coecke, Abstract Physical Traces, in Theory and Applications of
Categories, vol 14, 111–124, 2005.

[9] S. Abramsky, D. R. Ghica, A. S. Murawski, and C.-H. L. Ong. Applying game semantics
to compositional software modelling and verification. In Proc. TACAS’04, pages 421–435,
2004. LNCS 2988.

[10] S. Abramsky, D. R. Ghica, A. S. Murawski, I. D. B. Stark and C.-H. L. Ong. Nominal
games and full abstraction for the nu-calculus. In Proc. LICS’04, pages 150–159, 2004.
IEEE Computer Society Press.

[11] S. Abramsky and E. Haghverdi and P. J. Scott. Geometry of Interaction and Linear

Combinatory Algebras. Mathematical Structures in Computer Science 12:625–665, 2002.

[12] S. Abramsky and K. Honda and G. McCusker. A fully abstract game semantics for
general references. In Proceedings of the Thirteenth International Symposium on Logic
in Computer Science, (Computer Society Press of the IEEE) 1998, 334–344.

[13] S. Abramsky and M. Lenisa. Linear realizability and full completeness for typed lambda-
calculi, in Annals of Pure and Applied Logic, vol 134, 122–168, 2005.

[14] S. Abramsky and R. Jagadeesan. New foundations for the geometry of interaction. In-
formation and Computation 111, 53–119, 1994.

48



[15] S. Abramsky and R. Jagadeesan. Games and full completeness for multiplicative linear
logic. Journal of Symbolic Logic 59, 543–574, 1994.

[16] S. Abramsky, R. Jagadeesan and P. Malacaria. Full abstraction for PCF. Information
and Computation 163, 409–470, 2000.

[17] S. Abramsky and R. Jagadeesan. A game semantics for generic polymorphism. In Annals
of Pure and Applied Logic, 133: 3-37, 2005.

[18] S. Abramsky and A. Jung. Domain theory. In: Handbook of Logic in Computer Sci-
ence Volume III, S. Abramsky, D. Gabbay and T. S. E. Maibaum, eds., 1–168. Oxford
University Press, 1994.

[19] S. Abramsky and G. McCusker. Call-by-value games. In Proceedings of the Eleventh
International Workshop on Computer Science Logic, M. Nielsen and W. Thomas, eds.,
Springer Lecture Notes in Computer Science Vol. 1414, (Springer-Verlag), 1998, 1–17.

[20] S. Abramsky and G. McCusker. Linearity, sharing and state. In: P. O’Hearn and
R. D. Tennent, eds. Algol-like languages, pp. 317–348. Birkhauser, 1997.

[21] S. Abramsky and G. McCusker. Full abstraction for idealized Algol with passive expres-
sions. Theoretical Computer Science, vol. 227 (1999), 3–42.

[22] S. Abramsky and G. McCusker. Game semantics. In: Computational Logic: Proceedings
of the 1997 Marktoberdorf Summer School, pp.1–56. Springer-Verlag, 1999.

[23] S. Abramsky and P.-A. Mellies. Concurrent games and full completeness. In Proceedings
of the Fourteenth International Symposium on Logic in Computer Science, (Computer
Society Press of the IEEE) 1999, 431–442.

[24] P. M. Alberti and A. Uhlmann. Stochasticity and Partial Order: Doubly Stochastic Maps
and Unitary Mixing. Math. Monographien 18. VEB Deutscher Verlag der Wissenschaften,
1982.

[25] R. Amadio and P.-L. Curien. Domains and Lambda Calculi. Cambridge University Press
1998.

[26] A. Avron, The semantics and proof theory of linear logic. Theoretical Computer Science

57:161–184, 1988.

[27] J.C.M. Baeten and W.P. Weijland, Process algebra, Cambridge Tracts in Theoretical
Computer Science 18, Cambridge University Press 1990.

[28] H. P. Barendregt The Lambda Calculus, Studies in Logic, Vol. 103, North-Holland, 1984.

[29] J. Barwise and J. Seligman. Information Flow: The Logic of Distributed Systems. Cam-
bridge University Press, 1997.

[30] J. van Benthem. Exploring Logical Dynamics. CSLI Publications, 1998.

[31] J. Bergstra and A. Ponse, eds. Handbook of Process Algebra. Elsevier 2000.

[32] G. Birkhoff and J. von Neumann. The logic of quantum mechanics. Annals of Mathe-
matics 37, 823–843, 1936.

49



[33] B. Coecke. Entropic geometry from logic. In: MFPS XIX. 2003.
arXiv:quant-ph/0212065

[34] B. Coecke and K. Martin. A partial order on classical and quantum states. Re-
search Report PRG-RR-02-07 OUCL. web.comlab.ox.ac.uk/oucl/publications/

tr/rr-02-07.html

[35] V. Danos and L. Regnier. Local and asynchronous beta-reduction. In Proceedings of the

Eighth International Symposium on Logic in Computer Science, IEEE Press, 296–306,
1993.

[36] V. Danos and L. Regnier, Reversible, Irreversible and Optimal λ-machines, in Electronic

Notes in Theoretical Computer Science, 1996.

[37] Vincent Danos, Russell Harmer: Probabilistic game semantics. ACM Trans. Comput.
Log. 3(3): 359-382 (2002).

[38] J. Van Ejck and A. Vissers, eds. Logic and Information Flow. MIT Press, 1994.

[39] D. R. Ghica and G. McCusker. Reasoning about idealized algol using regular languages.
In Proc. ICALP’00, pp. 103–116. 2000. LNCS 1853.

[40] D. R. Ghica and A. S. Murawski. Angelic semantics of fine-grained concurrency. In
Proc. FOSSACS’04, pp. 211–225. 2004. LNCS 2987.

[41] D. R. Ghica and A. S. Murawski. Compositional model extraction for higher-order
concurrent programs. In Proc. TACAS’06, LNCS, 2006.

[42] G. Gierz, K. H. Hofmann, K. Keimel. J. Lawson, M. Mislove and D. S. Scott. Continuous
Lattices and Domains. Cambridge University Press, 2003.

[43] J.-Y. Girard, Linear Logic. Theoretical Computer Science 50(1):1-102, 1987.

[44] J.-Y. Girard, Geometry of Interaction I: Interpretation of System F, in: Logic Colloquium

’88, ed. R. Ferro, et al. North-Holland, pp. 221-260, 1989.

[45] J.-Y. Girard, Geometry of Interaction II: Deadlock- free Algorithms. In Proceedings of

COLOG-88 (P. Martin-Lof, G. Mints, eds.) Springer LNCS Vol. 417, pp. 76-93, 1990.

[46] J.-Y. Girard, Geometry of Interaction III: accomodating the additives. In [47], 329–389.

[47] J.-Y. Girard, Y. Lafont, L. Regnier, eds. Advances in Linear Logic, London Math. Soc.
Series 222, Camb. Univ. Press, 1995.

[48] A. M. Gleason. Measures on the closed subspaces of a Hilbert space. Journal of Mathe-
matics and Mechanics 6, 885–893, 1957.

[49] J. R. Groenendijk and M. R. Stokhof. Dynamic Predicate Logic. Linguistics and Philos-
ophy, 1991.

[50] D. Harel, D. Kozen and J. Tiuryn. Dynamic Logic. MIT Press, 2000.

[51] Russell Harmer and Guy McCusker. A fully abstract game semantics for finite nonde-
terminism. In Proceedings, Fourteenth Annual IEEE Symposium on Logic in Computer
Science, IEEE Computer Society Press, 1999.

50



[52] R. Hindley (1997) Basic Simple Type Theory, Cambridge Tracts in Theoretical Computer
Science, no. 42, Cambridge Univ. Press.

[53] J. R. Hindley and J. P Seldin. Introduction to Combinators and the λ-calculus. Cam-
bridge University Press, 1986.

[54] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall 1985.

[55] Dominic Hughes. Hypergame Semantics: Full Completeness for System F. D.Phil. Math-
ematical Sciences, Oxford University, 2000.

[56] J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: i. models, observables
and the full abstraction problem, ii. dialogue games and innocent strategies, iii. a fully
abstract and universal game model. Information and Computation 163, 285–408, 2000.

[57] C. Jones and G. Plotkin. A probabilistic powerdomain of valuations. In: LiCS‘89.

[58] G. Kahn and G. Plotkin. Concrete Domains. Theoretical Computer Science, 121:187–277,
1993. Appeared as TR IRIA-Laboria 336 in 1978.

[59] J. Laird. A fully abstract games semantics of local exceptions. Extended abstract, in
the Proceedings of the 16th Annual Symposium on Logic in Computer Science, LICS ’01,
2001.

[60] J. Laird. A semantic analysis of control. Phd thesis, University of Edinburgh, 1998.

[61] J. Laird. Full abstraction for functional languages with control. Extended abstract, in
the Proceedings of the 12th Annual Symposium on Logic in Computer Science, LICS ’97,
1997.

[62] G. Lowe. Quantifying Information Flow. In Proceedings of the 15th IEEE Computer
Security Foundations Workshop, 2002.

[63] G. Lowe. Semantic Models for Information Flow. In Theoretical Computer Science, Vol-
ume 315, pages 209-256, 2004.

[64] P. Malacaria and L. Regnier. Some results on the interpretation of λ-calculus in Operator
Algebras. In Proceedings of the Sixth International Symposium on Logic in Computer

Science, IEEE Press, 63–72, 1991.

[65] K. Martin. A Foundation for Computation. Ph.D. Thesis, Department of Mathematics,
Tulane University, 2000.

[66] K. Martin. A principle of induction. Lecture Notes in Computer Science Volume 2142,
Springer Verlag, 2001.

[67] K. Martin. Unique fixed points in domain theory. Proceedings of MFPS XVII. Electronic
Notes in Theoretical Computer Science, Volume 45, Elsevier, 2001.

[68] K. Martin. Entropy as a fixed point. ICALP 2004. Springer Lecture Notes in Computer
Science Volume 3142, 2004.

[69] K. Martin, M. Mislove and J. Worrell. Measuring the probabilistic powerdomain. Lecture
Notes in Computer Science Volume 2380, Springer Verlag 2002.

51



[70] J. McLean. Security models and information flow. In: 1990 IEEE Symposium on Security
and Privacy, 180–187, 1990.

[71] R. Milner. Comunication and Concurrency. Prentice Hall 1989.

[72] R. Milner. Communicating and Mobile Systems: The Pi Calculus. Cambridge University
Press 1999.

[73] A. S. Murawski, C.-H. L. Ong, and I. Walukiewicz. Idealized Algol with ground recursion
and DPDA equivalence. In Proc. ICALP’05, pp. 917–929. 2005. LNCS 3580

[74] D. S. Scott. Outline of a Mathematical Theory of Computation. Technical Monograph
PRG-2 OUCL, 1970.

[75] C. E. Shannon. A mathematical theory of communication. Bell Systems Technical Jour-
nal 27, 379–423 and 623–656, 1948.

[76] A. S. Troelstra, Lectures on Linear Logic. Center for the Study of Language and Infor-
mation Lecture Notes No. 29, 1992.

[77] G. Winskel, The Formal Semantics of Programming Languages, MIT Press, 1993.

52


