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Abstract

In this paper I present an outline of a philosophy of information from
a systematic and a historical point of view. In the first part I discuss
the concept of a Turing machine and various concepts of information,
mainly focusing on Shannon information and Kolmogorov complexity. I
show that these concepts can be interpreted as mathematical guises of
a common notion of information that is associated with the entropy of
data sets. Issues concerning the methodology of science, optimal coding,
data compression and induction are discussed in this context. In the
second part of the paper I show that these notions are rooted in the
history of philosophy and that a philosophy of information can be seen as
the resolution of an age old philosophical ambition to create a universal
language of science.

1 Introduction

According to the legend Theseus forgot to change the sail of his ship from black
to white on his return from Crete. He had promised his father to do this as a
sign of the fact that he had successfully defeated the Minotaur. The old Aegeus,
standing on the lookout, thought his son was dead and threw himself from the
cliffs. Any computer scientist could have pointed out that it is dangerous to use
a non-redundant one bit coding scheme for such an important message. This
example shows that our thinking about information encoded in bits has evolved
far beyond the traditional application in computer programs. Information seems
to be everywhere and almost everything seems to be associated with information.
The notion of information is a key category of modern science. In this paper I
will examine some of the roots of the concept of information and its relevance
for philosophy.

The central motivation for the philosophical study of information, in my
view, is the fact that the concept of information with its embedding in a fun-
damental mathematical framework is the closest we can get at this moment in
history to the realization of two very old philosophical ambitions:

e A unified mathematical description of reality and
e A unified scientific language.

I do not claim that these two ambitions are completely resolved, nor that philo-
sophical reflection on information is in any way finished, but I do claim that
recent insights in this domain shed new light on older philosophical research
programs and in some cases allow us to revitalize them. It is the aim of this



paper to sketch the contours of such a philosophy of information that can be
defined as:

e The philosophical analysis of the concepts of ’information’ and ’computa-
tion’.

o The philosophical analysis of the role of information in nature, science and
culture.

e The analysis of the notion information in the context of traditional philo-
sophical disciplines like metaphysics, methodology of science, epistemol-
ogy, ontology, ethics and aesthetics.

Philosophy of information is a young discipline with unclear boundaries.
A valuable attempt to define the subject is the paper of Floridi in this book,
who lists 18 open problems (See also: FLoridi [2004]). If anything, this list
shows that philosophy of information is far from mature. The length of the
list is rather depressing. The internal relation between the various problems is
unclear and the importance of the problems varies. The ambition of this paper
is to present a coherent view on the subject. I am well aware of the fact that this
view is debatable and that other approaches to the philosophy of information
are possible, but I think that the value my contribution lies in the fact that it
can be a starting point for further study and discussion.

There is no ambition to be comprehensive. One of the major problems in
writing this paper was selection of the material, especially for the historical
paragraphs. There are a lot of relevant sources that I do not mention because of
lack of space, personal preference, or possibly because I was not aware of their
existence. What is presented could be compared a bus tour through the domain,
pointing out interesting locations for further study. Given the present state of
the subject I think this ad hoc approach is justified. The paper is intended as a
sketch of a research program that I hope will take shape in the coming decades.

This paper is organized in three sections. I start with a description of the
current views on information. Then I continue with a section on history where
I show how the concept of information in the context of notions of a mathesis
universalis and a unified language for science is deeply rooted in the history of
philosophy. In the last section I analyze some of the central problems in the
current philosophical reflection on the notion of information.

2 Concepts

Information’ is a term that is much like ’energy’, ’entropy’ or force’. It has half
a dozen or so precise mathematical definitions and an almost unlimited num-
ber of colloquial meanings. The starting point of our investigation will be the
mathematical concepts of information as they are treated in basic introductory
texts in computer science (e.g. Hopcroft-Ullman, Cover, Li -Vitanyi). Some
competing notions of information are:



Information as a common sense concept.

Shannon information: bits: I(z) = —logs P(z).

Algorithmic information: Ky (z|y) = min{|p|:p € {0,1}*,U(p,y) = z}.

Fisher information: I(p) = [ [%(%%de.

e Quantum information stored in qubits

All of these concepts, except Fisher information, are treated extensively in this
volume. Later we will see that the historical background and the cultural impact
of these mathematical definitions for science and for every day life are vast and
highly non-trivial, but for the moment we will be naive and stick to standard
formal definitions. These notions are associated with a number of very powerful
ideas that are crucial for information theory:

e The mathematical definition of the concept information in terms of the
probability of a message.

e The definition of the bit as fundamental unit of information. The bit is
defined as the maximal amount of information that one can obtain from
a yes/no question (See Harremogs and Topsge in this book).

e The association of mathematical proof with computation as a sequence of
well-defined events in the physical world.

o The definition of the a priori probability of a binary object in terms of its
computational complexity.

The concept of a message sent from a sender to a receiver can be seen as a
true paradigm of modern science in the Kuhnian sense, just as the notion of
a perfect collision between bodies is a fundamental paradigm of Newtonian
physics and the notion of the primal scream (Uhrschrei) is a founding concept of
romantic thought. If one tries to deconstruct the modern notion of information
the following elements seem to come in to play:

e An underlying transaction. The notion that information flows between
the sender and the receiver and the notion that the information of the
receiver grows as a result of reception of the message.

o A code system. The notion that messages can be coded in terms of systems
of arbitrary signs.

o A mathematical measure of information content of the message.

One of the philosophical conceptions underlying this information paradigm is
a radical re-interpretation of the importance of language that took shape in
the twentieth century. Anything that science can say about the world has to
be expressed in language and therefore the starting point of any philosophical



reflection should be an analysis of language. The history of this development is
well-known and can be followed in any adequate textbook on philosophy. Traces
of these views can be found in the work of philosophers as diverse as Boole,
Frege, Husserl, Russell, Wittgenstein, Carnap, Heidegger, Feyerabend, Popper,
Lakatos, Searle, Austin and Derrida. An emerging philosophy of information
builds on these developments. It would, in my view, be wrong to interpret
the task of philosophy of information as a mere continuation of these ideas. Its
claim to fame is that it brings a form of mathematical rigor to the discussion that
carries the promise of philosophy as a real foundational discipline. It sheds new
light on a number of central philosophical problems, not only in the domains of
philosophy of knowledge and methodology of science but possibly even in ethics,
esthetics.

The universal Turing machine and a universal language of science

There are various possible notions of the concept of computation. To name a
few:

o Pythagoras’ model: addition, substraction, multiplication, division.

o The Godel model: recursive functions.

The Turing model: Turing machines.

The Church model: the lambda calculus.

The Wolfram model: cellular automata.

e The Quantum model: quantum computing.

A discussion of the technical issues concerning the concept of information is not
possible without an understanding of the concept of a Turing machine. In its
simplest form a Turing machine is a device with a read-write head, a infinite
working tape on which symbols can be read and written and a finite determin-
istic program for the manipulation of symbols. The only symbols needed are
’1’, ’0” and ’b’ (blank). The machine starts its calculation by reading input
from the tape, its stops when a certain predefined final state is reached. Not all
programs will stop. In fact Turing proved that there does not exist a program
that decides in all cases whether a certain machine will stop given a certain in-
put (undecidability). The combination of machines and programs that stop in
finite time is known as the Halting Set. This set could be seen as a transcendent
object in computer science: we know it exists, but it can not be constructed.
There are a number of reasons why Turing’s device can claim to be associated
with a universal scientific language. First of all the set of all possible programs
for a Turing machine is the set of all possible binary strings {0, 1}*, which is
equivalent to the set of natural numbers. Secondly, one can define a "universal’
Turing machine, that emulates all possible computations of all possible Turing
machines by first reading a definition of a machine from the tape followed by
the definition of the program and the execution of the program on the emulated



machine. This allows us to interpret the Turing machine as a universal comput-
ing device. Thirdly, all the current definitions of the concept of computation
(Lambda, calculus, combinatorial logic, recursive functions, etc.) are known to
be Turing equivalent, i.e. can be emulated on a Turing machine. This fact has
lead to the formulation of the so-called Church-Turing thesis, which states ev-
erything computable is computable on a Turing machine. It is hard to imagine
how this claim could ever be verified. In the worst case it is destined to be an
unproven metaphysical claim for ever. The thesis could easily be falsified by a
conception of calculation that can not be emulated on a Turing machine, but
sofar these conceptions of computation escape our imagination. From a tran-
scendental point of view the Turing machine encapsulates fundamental notions:
The local physical storage and processing of a finite set of discrete symbols as a
sequential finite discrete process in time according to a finite set of (determin-
istic) rules. The apparent universality of these notions lead to what one might
call the central working hypothesis of modern computer science:

Conjecture 2.1 Any finite discrete system or process can be described in terms
of a program for a Turing machine.

Personally I expect this claim to be falsified (or at least amended) somewhere
in the future, but for the moment it gives the foundation for a methodological
research program that is rich in perspectives and far from exhausted. It defines
a universal scientific methodology. For any system X we have to ask ourselves
the fundamental question: is X a finite discrete system? If so we can apply
our methodology and try to construct an adequate program to model it. The
decision to consider a certain phenomenon X (say a financial administration,
turbulence around a sail, human consciousness, the human cell, a black hole or
the universe as a whole) to be a finite discrete system can be controversial from
a philosophical point of view and require a separate philosophical motivation.
These questions are not part of our current analysis. For the moment I aim at
clarification of the central concepts and not at an analysis of their applicability.

The association with the old philosophical ambition of a mathesis universalis
is immediately clear from the Turing equivalence of recursive functions, which
lead to the following collorary:

Corollary 2.2 Any finite discrete system or process can be described in terms
of operations on natural numbers.

This analysis of Turing machines does not lead to a theory of information. It
is a theory neutral conception of manipulation of binary strings. In order to
determine what kind of information, and how much of it, is contained in these
strings we need separate definitions. Even within this context there are a number
of competing conceptualizations of the notions of information that need to be
treated here.

Shannon Information and optimal codes

The idea that the frequency of a letter is associated with the information it
contains (or its value) is well known to any person who solves a crossword puzzle



or plays Scrabble. If one knows that a word contains a ’z’ this is more informative
than an ’e’ because there are less words with a ’z’. This ’information’ about the
'z’ implies a bigger reduction of the search space. The crucial insight that has
lead to a mathematical theory of information is formulated by Shannon [1948].
Here the information content of a message is defined in terms of its probability:

Definition 2.3 The Shannon information contained in o message z is I(x) =
log1/P(z) = —log P(z),

where I(z) is the amount of bits of information contained in z and P(z) is a
probability distribution (0 < P(z) < 1). Note that': If P(z) = 1 then I(z) = 0.
I(z and y) = I(z) + I(y).

From a philosophical point of view it is important to note that Shannon
information says nothing about the meaning of the messages, nor about their
epistemological status. If z is a message and P(z) = 272 then the amount of
information contained in z is three bits and an optimal code for z would use
three bits, say 001. Apart from this z could have any meaning, varying from
” John has passed his exam” to ” Goldbach’s conjecture is true”. In itself this is
strange. We are inclined to say that if we get the information that John passed
his exam from a reliable source we consequently know that John passed his exam.
A simple bit code like 001 does not convey this information. Apparently there
are meanings of the term ’information’ that are not fully covered by Shannon’s
definitions. Shannon himself, by the way, would be the first to acknowledge
this. Also there is no straightforward translation of Shannon’s definitions in to
a theory of knowledge. A valuable attempt fill this gap is made Dretske (1981,
also this book ). The least one can say is that, on top of the formal definitions
that are offered by Shannon, the factual information that is transferred from
a sender to a receiver is dependent on the context of the dialogue and on the
background knowledge shared by parties involved in the exchange of messages.

A second observation that is philosophically relevant is that Shannon in-
formation as such is independent of the notion of a Turing machine. Shannon
defines information in terms of bits and Turing machines operate on strings of
zeros and ones that could be interpreted as bit strings. In this terms Turing
machines could be seen as information processing devices, but this is only a
very weak connection. Shannon’s notion of information and Turing definition of
computation seem to orthogonal. Shannon uses the notion of a bit to measure
amounts of information, but his theory does not say anything about the amount
of information that is stored in a string of bits itself.

The concept of Shannon information only makes sense in the context of a
set of potential messages that are sent between a sender and a receiver and a
probability distribution over this set. If we have such a setting we can design
an optimal code system. Suppose X is a set of messages z;(I = 1,... n) the
communication entropy of X is:

H(X)=- Y P(z;)log P(z;)

i=1,n

Llog is used for logs



. The Maximal entropy of a set of n messages, if P(z;) = 1/n for each I:
Hpmao(X) = —n(1/n) log (1/n) = logn

The Relative entropy: H, = H/H,,,;, the Redundancy: 1 — H,, the
Optimal code (that minimizes the expected message length) assigns —logP(z;)
bits to encode message z;. One finds an extensive discussion of these definitions
in the chapter by Harremoés and Topsge. The notion of optimality of a code
system is associated with the idea of compression of a set of messages. Suppose,
for the sake of argument, that we want to develop an optimal code for a certain
book, say Dickens’ ”A Tale of Two Cities”, and that we simplify the task to
finding an optimal code for an alphabet of 26 letters. 2 We can code each of
the 26 letters with a standard length of 5 bits. A set of messages in which the
frequency of each letter would be equal (1/26) has maximal entropy. Of course
such a set would contain only nonsense. It could not be normal English since
the frequency of letters in English varies greatly. Therefore a standard 5 bit
code is redundant and can be optimized. We can assign shorter codes to more
frequent letters. Giving up the fixed code length implies that our code has to
be prefiz free: no code can be a prefix of any other code. Standard Huffman
code provides an optimal solution for this problem. Using Huffman code one
can compress ”A Tale of Two Cities” 0.81 bit per character comparison with
the 5 bit code. We can ask ourselves if Huffman code is the best solution for
compressing a book. In a sense it is, if one sticks to compression of characters,
but there is no reason to do this. One could try to compress words instead or
maybe one could use an analysis of idiosyncrasies of Dickens’ style. This poses
an interesting theoretical problem: what would be the theoretical shortest code
for ” A tale of Two Cities”? In order to find an answer for this question we have
to turn our attention to a different definition of the concept of information that is
intricately related to the notion of a Turing machine: Algorithmic Information.

Algorithmic information

We have seen that with the theory developed by Turing we can define a universal
Turing machine. In fact there are an infinite number of such universal Turing
machines, so let us select a standard (small) one and call it U. The input of U
consists of two parts: a definition of a special Turing machine 7; in prefix code,
followed by the input code, or data D for T;. Observe that using Huffman code
we can create a program the reproduces ” A Tale of Two Cities” as output on U.
The crucial insight is that it is easy to construct a Turing machine that decodes
Huffman code. Let Dyorc,myy be the Huffman code for ” A Tale of Two Cities”
and let T,y be a Turing machine that decodes Huffman code in the standard
prefix free input format of U. The text of ” A Tale of Two Cities” can be coded
as
U(Txus + Drore,muf)

2This example is discussed extensively by Harremoés and Topsge.



When confronted with the input Txy ¢ + Drorc,myus our universal machine U
will first read the definition of Ty, reconfigure itself as an interpreter for
Huffman code and then start to interpret Dyorc,myy resulting in the text of ”A
Tale of Two Cities” as output. The bit string Thys + Drorc,Huy can be seen
as a program for the text of ”A Tale of Two Cities”. Let |D| be the length in
bits of the data set D and let Dyorc, spie be the 5 bit code for ”A Tale of Two
Cities. We will have:

|Trup + Drorc,vur| < |Drorc, spit]

Given the fact that a Turing machine for interpreting Huffman code is not
complicated the set Tryy + Drore,muy Will be shorter than the original 5 bit
code for ”A Tale of Two Cities”. In this way we have created a computer
program that generates the text of ” A Tale of Two Cities” on a universal Turing
machine. The bit code of this program is shorter than the original text. We
could go on and try to find more clever code systems that compress the text even
more. Such a code system, say Tcodesystem; could make use of the frequency of
words in the text, knowledge about the grammar of English and idiosyncrasies in
the style of the author. Such a code system would be *better’ than the Huffman
code if:
|TCodeSystemi + DToTC:il < |THuf + -DToTC,Hufl

where Dr,7c.; is the text encoded in the new code.

We can now answer the theoretical challenge from the previous paragraph:
the theoretical shortest code for ” A tale of Two Cities” would be the shortest
program that generates this text on U. In order to find this program ideally,
what we have to do is enumerate all possible programs for U, test them, and
select the shortest that generates ” A Tale of Two Cities”. Alas this is impossible
because of the uncomputability of the halting set. We know that such a program
exists, but it remains an intensional object.

This fact gives rise to a different definition of the concept of information. Li
and Vitanyi [1997] The descriptive complexity of a string z relative to a Turing
machine T and a binary string y is defined as the shortest program that gives
output & on input y:

Kr(zly) = min{|p| : p € {0,1}*, T (p,y) = =}

One can prove that there is a universal Turing machine U, such that for each
Turing machine T there is a constant c¢p, such that for all  and y, we have
Ky(z|ly) < Kr(z|y) + cr 3. This definition is invariant up to a constant with
respect to different universal Turing machines. Hence we fix a reference universal
Turing machine U, and drop the subscript U by setting K (z|y) = Ky (z|y). We
define:

Definition 2.4 The Prefiz Kolmogorov complezity of a binary string z is K(z) =
K (z|e). That is the shortest prefix free program that produces x on an empty
input string.

3For an extensive discussion of these definitions, see the chapter by Griinwald and Vitanyi
in this book.



A unified view on Shannon information and Kolmogorov complexity

We are now in a position to evaluate the difference between Shannon information
and Algorithmic information, i.e. Kolmogorov complexity 4. Suppose we have
a data set encoded in bits, say a five bit code of the text of ”A Tale of Two
Cities”. We can analyze this set from two perspectives:

e From a Shannon perspective as a collection of messages. In this we can
construct an optimal code using variation in frequency of the messages.
This leads to a relative compression of the set of messages that can be
computed. More frequent messages get shorter codes and contain less
information. We could call this concept of information relative.

e From a Kolmogorov perspective as a single message. In this case relative
frequency has no meaning, but there exist an optimal compression of the
message in terms of the shortest program on a Turing machine. The length
of this program is an absolute measure for the amount of information
contained in the message. This program is an intensional object and can
not be computed as such. Messages that are highly compressible contain
little information. This could be seen as a concept of absolute information.

As an example, suppose we have a bit string 0101010101010101010101010101.
We can recode this string in Shannon’s sense as ’01’=1;11111111111111, or
we can reprogram it in Kolmogorov’s sense as for x = 1 to 13 write ’01°.
Both structures are shorter than the original code reflecting the fact that the
string shows a regular pattern. In this case both the Shannon and the Kol-
mogorov compression do their work. In my view both algorithmic information
and Shannon information are different mathematical guises of one and the same
concept of information that is associated with entropy of data sets.

Claim 2.5 Information is associated with the entropy of data sets. Data sets
with low entropy can be compressed and contain less information than data
sets with mazimal entropy, which cannot be compressed and contain exactly
themselves as information. There are various ways to explain these relations
mathematically.

Shannon information starts with a segmentation of the set. In the limiting
case where we have very few segments, or only one, Shannon’s theory collapses
in to Kolmogorov’s conception of information. Kolmogorov’s conception of in-
formation is more powerful, but the price we have to pay is threefold: it is
non-constructive, therefore it can only be approximated and it is asymptotic.

Lemma 2.6 The concepts of Kolmogorov complexity and Shannon information
are equivalent in the case of data sets with mazimal entropy.

4For a more extensive discussion of these issues, see the chapter by Griiwald and Vitanyi
in this book.



Proof: In Shannon’s conception a set of messages can not be compressed if
they all have equal probability. Suppose we have a sequence of k messages with
maximal entropy based on a code system of 2" code words of n bits, then this is
equivalent to a random string of [ = kn bits and thus it can not be compressed
in Kolmogorov’s sense. Suppose, conversely, that we have a random bit string
I = kn bits with [ fixed, then for each segmentation of [ in k¥ messages the
entropy is maximal thus it can not be compressed in Shannon’s sense.

Given the equivalence of Shannon information and Kolmogorov complexity
one would expect that also in the limiting case of considering a bit string as one
unsegmented message it is possible to assign a probability to it. This is indeed
the case. Using results of Solomonoff Solomonoff [1997, 2003] and Levin we can
define an a priori probability of a finite binary string.

Definition 2.7 (Solomonoff, Levin) The universal ¢ priori probability Py (z)
of a binary string x is
Py(z) = Z 9-Ip|

U(p)==

This is the sum of the probabilities of all the programs that generate z on
a universal Turing machine on an empty input string. Thus strings with a
low Kolmogorov complexity, i.e. the ones that are compressible, get a higher
a priori probability. Associated with with a universal a priori probability we
expect to get a universal distribution. We can define a semi-measure along
these lines. A recursively enumerable semi-measure g on NN is called universal
if it multiplicatively dominates every other enumerable semi-measure p' i.e.
w(z) > ey (x) for a fixed positive constant ¢ independent of z. Levin proved
that such a universal enumerable semi-measure exists. Since there might be
more we fix a universal semi-measure m(x). The semi-measure m(x) converges
to 0 slower than any positive recursive function which converges to 0. Of course
m(x) itself is not recursive. We now give without proof a theorem that relates
all these concepts with each other:

Theorem 2.8 (Levin)
—logm(z) = —log Py(z) + O(1) = K(z) + O(1)

The philosophical importance of these concepts can not be overstated. They
offer new general solutions for age old problems. The universal distribution
has quite wonderful qualities and its philosophical relevance has hardly been
explored up till now.

A universal a priori near optimal Shannon code based on Kolmogorov
complexity

Levin’s theorem allows us to explore the relation between Shannon information
and Kolmogorov complexity at a more fundamental level. We define the stan-
dard bijection b between the set of binary strings {0,1}* and the set of natural
numbers N as

b(0, €), b(1,0),b(2, 1), b(3,00), b(4,01), ...

10



Where € denotes the empty word. We can define the function S : {0,1}* —
{0,1}* as:

Definition 2.9 S(z) = min;en{p : b(¢,p),U(p,€) = z}

Here U is a universal Turing machine. S associates each binary object z with
the first program that produces  on U with empty input.

Corollary 2.10 S is a universal a priori near optimal code associated with m
for binary strings in Shannon’s sense.

Proof: According to Shannon an optimal code for z given m would be — log m(x)
bits long. According to Levin we have —logm(z) = K(z) + O(1). But then
S(z) is such an optimal Shannon code, because by definition |S(z)| = K(z)
since S(z) is the first, and thus the shortest, program that produces z on U.
The code is near optimal, because of the factor O(1) in Levin’s theorem. S(z)
will always be maximally O(1) removed from the factual optimal code.

The function S is interesting because it brings the concepts of Shannon
information and Kolmogorov complexity together. On one hand |S(z)| is the
Kolmogorov complexity of z, on the other S(z) is an optimal a priori code for
z. Of course S can never be computed, but suppose that some Platonic oracle
would give us S. In that case we would have a universal a priori solution to the
problem of induction. S(z) reflects any regularity (e.g. deviation from mazimal
entropy, i.e. compressibility) that can be expressed solely in terms of the internal
structure z. Observe that S(z) will itself always be ’nearly’ random (and thus
incompressible) because it is the first program that computes z. If S(z) would
be compressible, it would itself have been identified much earlier by S. It is
important to note that, although S can not be constructed, it nevertheless
really exists. S is the closest we can get to a universal language of science, given
the current state of research in computer science.

To give some examples. S would make it easy to find binary expansions of
transcendent numbers like m and e. There are simple programs for these exten-
sions. In fact S would identify almost any discrete object of any mathematical
interest for us. On top of that S would give us an optimal code for the text
of ”A Tale of Two Cities” and indeed of any other conceivable poem, novel,
piece of music, movie or any work of art in digital code. The same would hold
for any digital data set that scientific inquiry could produce. S would ’explain’
the regularities and idiosyncrasies of these data sets in so far as they can be
expressed in terms of deviation of maximal entropy.

Let us have a closer look the relation between S and the problem of induction.
In one special guise induction amounts to selecting the most probable hypothesis
to explain a given data set. In terms of Bayesian learning this task can be
formulated as follows. Mitchell [1997] The prior probability of a hypothesis
h is P(h). Probability of the data D is P(D). The Posterior probability of
the hypothesis given the data is:

P(h)P(D|h)

P(RID) = =77

11



Theorem 2.11 Suppose that h,D € {0,1}*, i.e. both the data set and the
hypothesis range over the full class of finite binary strings. Selecting the Max-
imum A Posteriori hypothesis (MAP) to explain D, amounts to selecting
the hypothesis that minimizes the length in bits of

S(h) + S(D|h)

Here S(h) is the universal optimal Shannon code for the hypothesis and S(D|h)
is the universal optimal Shannon code for the data set given the hypothesis.
Proof:
hymap = argmaznen P(h|D)
= argmaznen (P(h)P(D|h))/P(D)

(since D is constant)
= argmazpcp (P(h)P(D|h))

= argmazycp log P(h) + log P(D|h)
= argminpcn — log P(h) — log P(D|h)
(Since h, D € {0,1}* and according to Shannon —log P(h) is the optimal code
for the hypothesis and — log P(D|h) is the optimal code for the data given the
hypothesis.)
= argminpecuS(h) + S(D|h)
This result is closely related tot the so-called:

Definition 2.12 The Minimum Description Length principle (MDL):
The best theory to explain a set of data is the one which minimizes the sum of

o the length, in bits, of the description of the theory and
o the length, in bits, of the data when encoded with the help of the theory

This principle was first formulated by Rissanen. Rissanen [1999] Research in this
domain is far from finished and these concepts are still the object of fierce debate
(M ref Domingos). A common misconception is the idea that the minimum
description length principle can be transformed in to a methodology for the
construction of a sequence of improving theories by means of an incremental
compression of the data set. Suppose that S;, h;, Sp and h, are arbitrary
coding schemes and hypotheses such that:

|S(h) + S(DIh)| < |Si(h;) + Si(D|h;)| < |Sp(hg) + Sp(D|hy)| <|D|
Although h is the best theory it is not necessarily the case that that h; is

better than h,. This can only be guaranteed if S = 5; = Sp, i.e. when the code
is optimal (ref !!! Adriaans and Vitdnyi, forthcoming).

12



Translating these observations to the domain of methodology of science gives
us a number of interesting insights: The regularity of the world we observe
around us is extremely improbable. The process of reducing a set of observations
to a general theory explaining these observations can be described as a process of
data-compression. A universal methodology of science would have the following
form:

e Represent your data set D in binary format.

e Select a hypothesis h in binary format such that |S(h) + S(D|h)| is mini-
mal.

This program fails because of the uncomputability of S but it can serve as as
a regulative ideal for the study of methodology of science. In certain cases the
theoretical results allow us to solve real life problems (ref !!! incompressibility
method) and to develop more efficient algorithms.

3 Historical roots of the concept of information

One can safely say that the explicit abstract notion of information as it was in-
troduced in twentieth century computer science was absent in antiquity. When
we read the pre-Socratic philosophers like Zeno, Parmenides or Plato with our
modern mind, we feel uneasy about the undifferentiated mix of formal, epis-
temological, ontological, ethical and esthetical questions. It is all there, but
without the distinctions. The same holds for the notion of information. With
hindsight one could say it has played a role in philosophy from the beginning,
without being recognized as such. The history of the concept of information
is related to, but should not be identified with: the history of the term ’in-
formation’, the history of the computer, the history of logic or the history of
epistemology. The intention of the following paragraphs is not to give a full
fledged history of information, but more to point at interesting ancestors of the
modern approach.

A note on the history of the term ’information’

The notion that knowing something implied knowing its form’ goes back to
Plato’s theory of ideas as forms. Aristotle’s more empirical doctrine of the four
causes (causalis, finalis, formalis and efficiens) also distinguishes the notion of
form as a crucial element of knowledge. The original technical notion of the
Latin word ’in-formare’ (giving form to something, impressing ideas/forms in
the mind in the Platonic sense) that is found in the writings of Cicero (1! ref)
and Augustine seems to have played no role in the emergence of the modern
concept of information. In the 15th century the French term ’information’
finds its way into the colloquial vocabulary of European languages with various
subtle difference in meaning, clustering around meanings like ’investigation’,
’education’, ’the act of informing or communicating knowledge’, ’intelligence’
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etc. After Descartes the technical term seems to vanish from the philosophical
debate. It does not play any specific role in the work of a broad philosopher
like Kant. There is no lemma, on information in Windelbands famous *Lehrbuch
der Geschichte der Philosophie’ from 1889. Even Edward’s Encyclopedia of
Philosophy from 1967 does not have a separate lemma on information. [ed.]
The same holds for the well-known History of Logic written by Kneale and
Kneale that first appeared in 1962. In short the term ’information’ seems to
have been absent from the philosophical dialogue for a couple of hundred years.

The history of the emergence of the technical term ’information’ in the 19th
and 20th century has yet to be written. It appears however that it is closely
connected with the rise of modern intelligence services and the development of
new means of communication like the telegraph. At the end of the 19th century
several countries created departments with the responsibility to collect military
information. In 1866 the German government started a Foreign Office Political
Field Police with the mission to procure intelligence about the Austrian enemy
army. After the Franco-German war in 1870 the French created a Statistical and
Military Reconnaissance Section (italics mine) with the specific task to collect
information on German military operations. In 1873 the British War Office
established an Intelligence Branch, staffed by twenty-seven military and civilian
personnel. In the USA a Office of Naval Intelligence was established in 1882
followed by a Military Information Division (MID, italics mine) -with one clerk
and one officer- in 1885. Its task was to collect "military data on our own and
foreign services which would be available for the use of the War Department and
the Army at large.” (see: ! A Century of Spies by Jeffrey T. Richelson). The
enormous influence of intelligence services in the 20th century is well-known. An
example of modern general use of the term information in this context can be
found in the World Fact Book, an annual publication of the CIA: Information
is raw data from any source, data that may be fragmentary, contradictory,
unreliable, ambiguous, deceptive, or wrong. Intelligence is information that has
been collected, integrated, evaluated, analyzed, and interpreted. The shift in
meaning of the term ’information’ from ’information as the act of informing’
to the ’information as the result of the act of informing’ to ’information as
something that is contained in the message that is used to inform’ is striking
and relevant.

Code systems

Coding systems are as old as language itself. The ambition to hide information
in messages and to decode these messages without knowing the key has always
existed. (Ref Kahn !l). Ceasar already used code systems to communicate with
his generals. Technically one has to distinguish various techniques: Ciphers use
letter transposition and substitution systems (Ceasar alphabet, cipher disks, Vi-
genére tablaux, Enigma). Codes consist of lists of codewords and code numbers.
The idea that it is efficient to assign the shortest codes to the most frequent
signals was known long before Shannon defined its mathematical basis in 1948.
With the invention of bookprinting in the 15th century typefounders directly
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made the empirical discovery that they needed more e’s than z’s in a font. The
fact that the frequency of specific letters in a text is typical for a certain language
was well-known and was used to decode simple letter replacement ciphers. The
18th century saw the emergence of so-called blackrooms in Europe with the sole
task to encode and decode messages for political purposes. Around this time the
first elementary statistical techniques to decipher text on the basis of frequency
analysis were developed. With the development of the first electronic commu-
nication media the question of efficient coding systems became urgent. In 1838
Samuel Morse designed his famous code on the basis of a statistical analysis of
the number of letters in the typecase of a Philadelphia newspaper. The most
frequent letter ’e’ got the shortest symbol, a dot. The next frequent letter ’t’
was encoded as a dash. The publication of Shannon’s paper also marked a
breakthrough in our understanding of code systems. Almost ciphers and codes
can be cracked with statistical techniques, given enough data. An exception
form the so-called one-time-pad ciphers (Shannon [1948]).

Entropy

From thermodynamics to quantum mechanics the study of physics is covered
with deep questions concerning the nature of information and our capacity to
know the world around us. The confrontation between physics and information
theory often lead to important breakthroughs in both disciplines. An extensive
discussion of these issues is found in the chapter by Bais and Farmer in this
book.

The idea that matter consists of elementary particles dates back to Dem-
ocritus. It was restated in 1802 by the English school teacher John Dalton.
The notion of atoms immediately leads to interesting epistemological problems.
Suppose that we want to analyze the behavior of a certain amount of gas in
a closed container. The gas has a certain temperature and a pressure. If we
reduce the volume of the container the statistical probability of collision be-
tween a particle and the wall will increase. On a macroscopic level this will
be observed as an increase of pressure. James Clerk Maxwell was the first to
introduce probabilistic methods into physics in this context [!!! ”Illustrations of
the Dynamical Theory of Gases,” 1860].

The explanation of macroscopic continuous events in terms of a statistical
analysis of large quantities of discontinuous microscopic events leads to episte-
mological questions. In a container with only a handful of particles the concept
of pressure has no meaning. It only exists in the presence of extremely large
quantities of elementary particles. Al things being equal we observe the pressure
of the gas to be constant at the macroscopic level. At the same time at the mi-
croscopic level there is a constant change of configurations. A macroscopic phe-
nomenon like pressure is called emergent. It does not exist at the microscopic
level. We can reason about the macroscopic events without any information
about the specific microscopic configurations. This is striking. Configurations
in which all of the particles are in one half of the container are highly unlikely,
but not logically impossible. In such a case the pressure in one part of the

15



container would be zero and twice as big as the original pressure in the other
half. If the container would be a cylinder and we place a piston in it then the
gas would push the piston to one side of the cylinder. If the pressure on both
sides of the cylinder is equal no movement will be observed. Apparently some
configurations can be converted into kinetic energy. Others lack this potential.

In order to explain these phenomena Clausius introduced the concept of
entropy. Clausius [1850] Entropy is a measure of the total number of different
microscopic states the macroscopic system can exist in. The entropy in the
container is higher if the particles are evenly distributed over the space in the
container. With the concept of entropy Clausius could formulate what later has
become known as the second law of thermodynamics: a closed system will re-
main the same or become more disordered over time, i.e. its entropy will always
increase. The philosopher Henri Bergson called this insight ”the most meta-
physical law of nature” (Henri Bergson, Creative Evolution !!!). Clausius ended
his paper with a rather disturbing observation: ”The energy of the universe is
constant-the entropy of the universe tends toward a maximum.”

The importance of thermodynamics for information theory can hardly be
overstated. There is an striking equivalence between the mathematical formal-
ization of the concepts of entropy and Shannon information. The total entropy
of two independent systems is the sum of the individual entropies while the total
probability is the product of the individual probabilities. Boltzmann therefore
proposed to that the entropy of a system would be proportional to the logarithm
of the number of microstates a system could be in. Likewise Shannon proposed
to express the amount of information in a message in terms of the base two
logarithm of its probability. The total information in two independent messages
is the sum of the individual information per message. The probability of two
messages occurring together is the product of their individual probabilities. The
use of the base two logarithm ensures that the information in a message can be
expressed in bits. Shannon also introduced the concept of entropy of a set of
messages. The entropy is maximal if all the messages in the set have equal prob-
ability. A related notion of entropy can be defined in relation to Kolmogorov
complexity. Strings with low Kolmogorov complexity have low entropy. Random
strings have high entropy. The mathematical kinship between thermodynamics
and theory of information ensures an almost seamless translation of concepts of
one theory to the other. In sweeping statement one might say that information
theory is the thermodynamics of binary strings while thermodynamics is the
information theory of particles in space.

Recently physicists have taken this analogy to the extreme by analyzing
black holes and even the whole universe as a computational system. Lloyd and
Ng [2004] The aptness of this analogy is doubtful. If one defines computing as
the local physical storage and processing of a finite set of discrete symbols as a
sequential finite discrete process in time according to a finite set of (determinis-
tic) rules, then it is not directly clear how a kilo of pure plasma or a black hole
could be interpreted as a computer. These conceptions rather seem to be asso-
ciated with localized parallel random processes that are only in a very specific
sense equivalent to computing. There is certainly no stable data storage in a
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kilo of pure plasma although theoretically it can store 103° bits of information.

The minimum description length principle (MDL) and in-
duction

MDL is often related to Ockham’s razor (entia non sunt multiplicanda preater
necessitate, William of Ockham, ca. 1290-1349). An association that is debat-
able, since Ockham’s razor is related to a specific nominalistic critique of Plato’s
theory of ideas (as defended by Duns Scotus, 1266-1308) that is quite far re-
moved from the general problem of induction. In fact the idea of explaining
a certain set of observations in terms of an optimized two-part code (Theory
+ Data encoded with the theory) could as well be interpreted as a Platonic
ambition, where the Theory is the ideal description of the data and the Data
encoded with the theory is a description of the noise, or faults, in the data.
The underlying problem seems to have a different nature: the question of the
regularity of nature.

The insight that it is impossible to select the best theory to explain a set
of observations with absolute certainty is known as the induction problem since
Hume (Hume [1914]). It denies science the possibility to formulate universal
laws with absolute certainty. Several philosophers have tried to deal with this
problem. It was the main motivation for the development of Kant’s transcen-
dental philosophy in the Kritik der reinen Vernuft. Kant’s attempt is the last
major effort to bridge the gap between empirical science and traditional phi-
losophy striving at the formulation of absolute truths. The empiricist program
was revived by the so-called Vienna circle in the beginning of the 20th century.
The ambition was to seek the foundation of science in the analysis of elementary
phenomena, that could be observed empirically. Needless to say that with this
methodology the induction problem is a major obstacle for science. Popper,
who occasionally attended meetings of the Vienna circle, formulated a solution
in terms of the asymmetry between verification and falsification.Popper [1952]
Although this solved part of the problem the issue heuristics remained open
(Context of discovery versus context of justification). One solution to the in-
duction problem is to view scientific knowledge as being essentially statistical.
The concept of probability is far from harmless from a philosophical point of
view, Héjek [2002]. Carnap [1950] has argued that there exist two very dis-
tinct forms of probability: a priori probability or ”Rational credibility” and
empirical probability in the sense of ”limiting relative frequency of occurrence”.
Indeed there seems two be a distinct difference between the use of the notion of
probability in observations like: ”It is highly probable that an English sentence
contains more e’s than ¢’s” and "It is highly probable that life on earth origi-
nated from outer space”. The first is a statement about the frequency of letters
in English. It can be corroborated by a sequence of experiments. The second
statement seems different. It has prima facie nothing to do with limiting fre-
quency. It can not be corroborated by experiments. Even if our planet was the
only planet in the universe with life, the statement still could be true. It seems
to express a rational belief that somebody could have after carefully examining
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the evidence. Black [1967] has criticized Carnap: different modes of verification
for probability statements do not imply that there necessarily exist different
notions of probability. The fact remains that we sometimes make judgements
about the probability of individual isolated structures. This seems to involve a
notion of a priori probability. If we can assign a priori probabilities to theories
and data sets and conditional probabilities to a data set given a theory then we
can calculate the probability of a theory given a data set. The formulation of an
exact answer to these theoretical questions is one of the great achievements of
computer science in the 20th century. Solomonoff defined the idea of algorith-
mic complexity of a binary object as the shortest program that computes this
object on a universal reference Turing machine. Solomonoff [1997] He showed
that the algorithmic or Kolmogorov complexity of an object is associated with
an a priori probability of this object. The impact of this insight can hardly
be overstated. It allows us in theory to assign an priori probability as well as
a complexity to an individual binary object. (universal distribution). This is
the basis for modern theories about learnability and studies of methodology of
science.

A unified description of Nature

I have interpreted the philosophy of information as the resolution of two old
philosophical ambitions:

e A unified mathematical description of reality and
e A unified scientific language.

As is to be expected the conceptualization of these notions in philosophy is
a complex process that could easily fill a monograph. It was a cumbersome
development that left traces throughout the history of philosophy. But the roots
of the concept of information are certainly not predominantly philosophical.
The application of mathematics to different regions of reality has traditionally
been the domain of the engineer. In this sense there is an fascinating dialectic
between the bold statements of early philosophers and the meticulous process of
the mathematical conceptualization of reality in the history of science. A birds
eye view of this development would show the following rough phases: ca. 600
BC: space, music, ca. 1500 AD: seeing, light, ca. 1600: temperature, movement,
ca. 1700: force, probability, ca. 1850: thermodynamics, ca. 1900: language:
ca. 1940: social/information, ca. 1970: chaos/complexity.

The earliest traces of the thought that the essence of the world is mathemati-
cal are found in the writings of the Pythagoreans. The later Plato seems to have
cherished similar thoughts. In the Politicus he refers to them and states that
everything in the world and in human life is object of geometry (Polit. 285a).
In his Metaphysics Aristotle repeatedly mentions Plato’s view that the ideas
are essentially numbers. What Plato exactly had in mind is unclear and still a
matter of debate. He seems to have limited to the amount of "idea-numbers’ to
ten and his thoughts were probably more mystical than related to any modern
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mathematical views, but the idea was powerful and had a decisive influence in
history.

It has also bearing on the notion of a universal language of nature. The
ambition formulate ideas clearly has been to prime goal for philosophers from
the early start in Greek thought. With the rise of modern science the need
for unequivocal terminology and efficient language became apparent. Plato was
well aware of the problem of the conventional nature of natural language. It is
discussed extensively in the Cratylus. If language is purely conventional then
there is no guarantee that our linguistic concepts are scientifically adequate.
The challenge for philosophy then would be to construct a pure natural lan-
guage that by nature would be adequate to express scientific concepts. Also
in Aristotle’s writings (Specifically De Interpretatione and the Categories) this
ambition is present. They would remain a predominant influence throughout
history although we have to wait till the end of the 19th century before the
notion the mathematical study of language as a purely arbitrary system of signs
emerged. During the middle ages the study of language and logic as a tool for
philosophy reached unprecedented heights culminating, via influences of Por-
phyri, Boethius, in the Dialectica of Abélard (1079-1142) and Ockham’s theory
of suppositions. Medieval mathematical thought is underdeveloped and the
philosophical investigations mainly focus on the relation between language and
logic. But also in this context we find powerful ideas about the intricate relation
between the structure of language and the world. Early Christian philosophers
proposed the doctrine that god is the author of two texts: the Bible and the
book of nature. Understanding nature is equivalent to deciphering the book of
nature.

” For this whole visible world is a book written by the finger of God, that is,
created by divine power [...] But just as some illiterate man who sees an open
book looks at the figures but does not recognize the letters: just so the foolish
natural man who does not perceive the things of God outwardly in these visible
creatures the appearances but does not inwardly understand the reason.” (12th
century Hugh of St. Victor qtd. in Josipovici 29)

The thought that nature is a text that needs to be deciphered plays an
important role in modern philosophy (Foucault, Derrida) as well as in every day
life. Tt gives the concept of the computer as a universal information processing
machine a natural embedding much older and general philosophical reflection.

A key insight in the study of the history of the concept of information is
formulated in this book by Devlin and Rosenberg in their chapter on informa-
tion in the social sciences. The basic idea is that information is an abstract
notion that is the natural byproduct of the emergence of modern media. When
human communication was transformed from a direct dialogical interaction be-
tween individuals to an interaction that was mediated by technology (books,
newspapers, the telephone, television, internet etc.) the need to create an ab-
stract umbrella term to denote the ’stuff’ that was flowing between sender and
receiver of a message emerged. In this respect the emergence of the empirical
sciences in the the 17th century is a central period in history of the conceptu-
alization of information. Descartes formulated a firm mathematical framework
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for the description of the material world, but his dualism prevented him from
understanding the interplay between language and the growth of knowledge.
For Descartes man rationality was equivalent to mastering language and was an
innate quality. The communication between the res extensa and the res cogi-
tans remained a central problem. Descartes is important because he is the first
philosopher who formulated a theoretical framework in which the mediation be-
tween mind and body, between the knower and the known is problematic. With
hindsight one could say that in the work Descartes the need for an abstract con-
cept of mediation between knower and the known, i.e. a concept of information,
became problematic for the first time. Because of this lack, he was incapable of
developing an adequate philosophical theory of language.

The first philosopher to take up this challenge was Locke (1632-1704) who
developed a psychological version of carthesian dualism in the ” Essay concerning
human understanding” (1690). The carthesion cogito becomes a epistemological
subject that starts as a tabula rasa and is gradually filled up with ’ideas’ that
find their origin in experience. Lock is quite liberal in his concept of an ’idea’:
” whatsoever is the object of understanding when a man thinks ... whatever is
meant by phantasm, notion, species, or whatever it is which the mind can be
employed about when thinking”. (Essay, 1,i,8) This abstract notion of an idea, as
a qualitative building block of knowledge, can be interpreted as a philosophical
precursor of the modern concept of information. Ideas flow from the knower
to the known, they can be isolated and combined in to new knowledge. When
we receive ideas our knowledge grows. Next to Pysika and Praktika Locke
considered the study of Semiotika to be on of the three cornerstones of science:
" the business whereof is to consider the nature of signs the mind makes use of
for the understanding of things”. (Essay, IV, xxi,4). In part III of the essay
Locke develops a theory of language. The philosophical value of this part of his
work is limited but the historical influence on the 18th century philosophical
conception of language has been enormous.

There have been numerous proposals for artificial languages that would
somehow make scientific communication more efficient and or reliable (Bacon,
Wilkins, Leibniz, to name a few). Around the same time that bishop Wilkins
was conceiving his artificial language in England the grammarians of Port Royal
in France developed their universal grammar. The first author to propose a uni-
versal character was Francis Bacon but the basic strategy of every proposal is
the same: step 1) develop an ontology, step 2) Assign a sound or a visual symbol
to each basic concept in the ontology, step 3) design a syntax to combine the
symbols. There are two distinctive features that separate these proposals from
the modern conception of a universal language. The first is, what one could
call, the ontological assumption (cf. step 1). None of the authors doubted that
an ideal language for science with an ideal set of concepts was in fact possible.
The second difference between early artificial languages and the modern concep-
tion of a universal language is the concept of a purely formal language that is
completely defined in terms of its syntactic operations. It was developed in the
second half of the 19th century. (George Boole: An Investigation of the Laws of
Thought, London 1854, Gottlob Frege: Begriffschrift, 1879, Russell-Whitehead;
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Principia Mathematica, 1910 ).

Apart from coining neologisms scientists followed two strategies to identify
the ideal language for science: they declared an existing language (Latin or
their own) to be superior to any other for this purpose or they designed an
artificial language. Simon Stevin for example believed the Dutch language to
be ideal for science because of its tendency to denote ’single things with single
sounds’ (ynckel saken met ynckel; gheluyden te beteeckenen. Uytspraeck vande
Weerdicheyt der Duytsche Tael 1586). It is instructive to note that Stevin
tried to prove his point by making list of single syllable words for various lan-
guages. In fact he argues that the Dutch language is a near optimal coding
system for scientific concepts. Throughout the 18th century we seen an explo-
sion of essays touching on the structure and origin of language. In England
Warburton and Monboddo, in Italy Giambattista Vico, in France Maupertius,
Condillac, Rousseau, Diderot, I’Epée and Condorcet, in Germany Leibniz, Wolff,
Siissmilch. The thought that language is more than a neutral tool and can be
a barrier for communication is of later date (the Romantic period: Hamann,
Herder, Von Huboldt, Sapir-Whorff). It is foreshadowed in Rousseau’s Essay
sur Porigine des langues (Ref!!! See: La tranparance et I’Obstacle by Starobin-
ski). The stream of publications on language and philosophy swells in to a
river in the 19th century. The notion that understanding the universe involves
calculation in a universal language is a central idea in Leibniz’ Characteristica
Universalis. The first person to realize that a mechanical calculator could be
used as a universal information processing machine seems to have been lady Ada
Lovelace working with Charles Babbage on the so-called Analytical Machine in
1842. The notion culminates in Turing’s definition of a universal machine.

The true precursor of a modern philosophy of information is the research in to
the foundations of mathematics starting at the end of the 19th century. Hilbert
had formulated his formalist program for mathematics, which is the culmination
of the ambition implied by Locke’s Semiotika: the study of mathematics as pure
formal manipulation of signs. Two developments are specifically important:
logicism: the attempt to reduce mathematics to logic and intuitionism: the
attempt to develop mathematics from a purely constrictive perspective. It is
interesting to note that that both attempts are reductive and in their pure form
lead to the sacrifice of parts of mathematics as not well-founded.

The logicist program, that is associated with the work of Frege, Russell,
Whitehead and the early Wittgenstein, could be seen as an attempt to deploy
formal logic as a universal language for science. Wittgenstein’s Tractatus can
be interpreted as a philosophical analysis of the consequence of such a language.
This research program was taken up by the members of the Vienna circle: with
Carnap’s "Der logische Aufbau der Welt’ as a central publication. The philo-
sophical problems identified by Wittgenstein and the Vienna circle were soon
overshadowed by technical problems in the heart of the logicist program itself
(heuristics, incompleteness, undecidability, probability). Problems that are still
in the center of current research. The modern notion of a universal language
circles around the definition of the bit as a fundamental unit of information and
recursive manipulation on binary strings as fundamental syntactic operation.
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The metamathematical aspects of these operations are well-studied. At least
part of Francis Bacon’s original ambition is realized by modern information
theory.

Brouwer’s intuitionism deserves special attention in the context of a possible
philosophy of information. In his first Kritik Kant had tried to give a foundation
for the sciences, taking up the challenges that had been formulated by the em-
piricists. Kant’s attempt took the form of an intricate analysis of the interplay
between the act of thinking and the intuition (Anschauung) of space and time.
In the center of this attempt we find an analysis of the transcendental unity of
apperception in which the mind ’observes’ the unity of its own actions. In this
analysis Kant thought he had found the basis for a transcendental demarcation
program, separating true scientific judgements from mere speculation. The in-
fluence of this research program in the 19th century is enormous. By the end of
this century the program had ran in to serious difficulties caused by, amongst
other things, the discovery of non-euclidian geometry. Several philosophers at-
tempted to revive the Kantian program. In his ’Philosophie der Artimetik’
Husserl for example tried to find a basis to concept of number in analysis of the
act of counting. He abandoned this attempt after sharp criticism from Frege.

The predominant form Kantian philosophy at the end of the 19th century
was based on a psychologistic (and in my view overly simplistic) interpretation
of the human mind as an entity capable of observing its own actions (von Hart-
mann, Dér Mouw, Heymans). This philosophical position is the starting point
of Brouwer’s foundational program: only the I and its experiences exist. Math-
ematics has to be reinterpreted as a construction of the human mind. Whatever
we may think of this philosophical position, with the conceptualization of the
Turing the conception of mathematics as a constructive activity proved to be
very fruitful. The transformation from mathematics as a construction of the
mind to mathematics as something that is computed on a machine is philo-
sophically interesting. Since the middle of the 20th century the predominant
view is that mathematics do not need separate philosophical foundation (Quine,
Putnam), but the question of the adequacy of formal models of the world that
we develop is still a central philosophical problem. The conception of a Turing
machine can be seen as a modern distant relative of the Kantian transcendental
unity of apperception. Just as Kant tried to find a foundation for science in the
analysis of the act of thinking embedded space and time one could see the Tur-
ing machine as its materialistic transcendental counterpart. It is embedded in a
conception of space and time and it is as close as we can get to a device for the
analysis of universal models. Although I do not believe that this insight in itself
leads to new fruitful philosophical theories it is an interesting historical parallel
and certainly one that most computer scientists are not aware of. If anything,
such reflections show that central issues in the philosophy of information are
deeply rooted in the history of philosophy.
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4 Philosophical Problems

In this paragraph I mention, without further analysis, some philosophical issues
that I believe are of central importance in the philosophy of information.

Probability

It is impossible to write a philosophical analysis of the notion of information
without a deeper study of the underlying problem of probability. The concept
of empirical probability seems to come closest to what Shannon had in mind
in his seminal paper, Shannon [1948]. It is mainly a theory about optimiza-
tion of codes. However if we 'plug’ the notion of probability rational degree
of belief in to the formal framework of Shannon we get a formal theory about
beliefs. If I believe that it is very improbable that life on earth generated form
outer space then a statement from a reliable source implying that this is in fact
highly probable contains a lot of information for me. Shannons formal theory
is neutral and open to both interpretations. This dichotomy runs right through
this book. Harremogés and Topsoe describe the traditional Shannon interpreta-
tion. The contributions of Dretschke and Seligman seem to be rooted in the
rational belief position (although the former maintains that his theory is open
to both objective and subjective interpretations of the concept of information)
and Griiwald and Vitanyi present the notion of Kolmogorov complexity, that
allows us to define the concept of an a priori probability of individual binary
objects. Apparently this is a hairy issue. H4jek [2002] distinguishes a number
of interpretations of probability: Classical Probability, Logical Probability, Fre-
quency Interpretations, Propensity Interpretations and various modes of Sub-
jective Probability. I am not convinced that all these notions of probability
lead to fundamentally different concepts of information, but obviously a deeper
analysis of the concept of probability is of vital importance for the development
of a philosophy of information.

Meaning, information structure and randomness

Suppose that we reserve a room at the university of Amsterdam for the purpose
of an experiment. The room has no windows and the door is closed. In the
room there is a black box. The black box produces a bit every minute. If the
bit is "1’ the light is switched on, if it is ’0’ the light is switched off. This bit is
published on a web site. Of course nobody knows the contents of the black box,
but for the sake of arguments we choose three possible configurations. The box
could contain:

1. A random process that generates bits (e.g. a dwarf flipping a coin).
2. A deterministic computer program generating bits.

3. An infinite database with a list of bits.
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These three definitions represent radically different views on the phenomenon of
a source of information. The first is an objective random process associated with
an objective form of probability. All the information that is contained in the
sequence can be measured in terms of its fundamental statistical characteristics:
mean, variance, autocorrelation function etc. The second is a deterministic
process with a definition of finite length. The maximal amount of information in
a string produced by the program is limited to the length of the definition of the
program. It could lead to a sequence of bits with a certain statistical bias (e.g.
repeating patterns), but this is not necessary. Some transcendental numbers
have short definitions (e.g. e and 7) but lead after a bit of twisting to bit
patterns that cannot be recognized as non-random. The third is a deterministic
process with a definition of infinite length. It contains an infinite amount of
information that can never be learned in a finite amount of time.

Theorem 4.1 The three sources of information, (a random process, a deter-
ministic computer program and an infinite database) cannot be distinguished
from each other by a receiver of the information.

Proof: Each of the three sources can produce a sequence of bits that cannot be
distinguished from a random sequence. 1) The case of the random process is
trivial 2) A deterministic program can generate strings that cannot be recog-
nized as non-random. The non-computability of Kolmogorov complexity tells
us that there will always be compressible strings for which no compression can
be computed. 3) An infinite database can continue a random set of bits or a set
of non-random bits that cannot be recognized as such.

The philosophical importance of this result is obvious. We cannot make
a distinction between a source of information that is random and a source of
information that has high complexity. This makes the traditional controversy
between determinism and indeterminism from the point of view of informatics
senseless. It reveals the famous dictum by Einstein ”God does not play dice”
as a real metaphysical position. It is not a question that can be settled by
any argument. It also shows that is impossible to assign any form of objective
probability to a source of information.

There is however a form of subjective probability that is very relevant in this
context. Suppose that we want to form a hypothesis about the internal structure
of the black box and the black box produces a string that shows some regularity.
In that case it is extremely unlikely that the source of bits is random. Suppose
that our black box produces a string of n ones 1;15...1,. The probability of
creating this string with n flips of a perfect coin is 27". So, intuitively, with
each one that is produced by our black box the hypothesis that it contains a
random process becomes more unlikely in favor of the hypothesis that the bits
are produced by some deterministic process. Yet this argument is flawed because
any bit string of length n produced by flipping a perfect coin has probability
27" and therefore is extremely unlikely. We have no clear ground to favor any
regular string over a random one as a ground for selecting between hypotheses
about the content of the black box. The theory of Kolmogorov complexity
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allows us to define the concept of randomness deficiency of a string. The idea
is the following. A string like, say, 11100101000100 is typical for a random
source. Such a string is produced by a source is perfectly compatible with the
hypothesis that the source is random. A string like 11111111111111 is atypical
for a random source. When produced by a source it makes the hypothesis that
the source is random unlikely. A high randomness deficiency corroborates the
theory that the process in the black box is non-random. This analysis suggests
that the best thing we can do in science is: observe a set a set of phenomena,
estimate the randomness deficiency and formulate a theory. Unfortunately the
situation is more complicated. This becomes clear if we analyze the following
claims.

Claim 4.2 We get exactly one bit of objective information each minute.

It is clear that each bit that is published on the web by the black box contains
real information about the actual binary situation in the room: the light is on
or off.

Claim 4.3 The meaning of the message contained in the bit and the knowledge
generated as a consequence of receiving the message is not dependent on the
content of the black box.

Yet there is a subtle interplay between the growth of our subjective infor-
mation and our theories about the nature of the black box.

Claim 4.4 The objective amount of information we get is dependent upon our
interpretation of the nature of the source of information.

The three possible interpretations of the content of the box could be seen as
three different types of senders of messages. I will define three possible receivers
along the same line:

1. A forgetful receiver that determines the statistical characteristics of the se-
quence: mean, variance, autocorrelation function etc. Here our subjective
information grows incrementally at a very slow rate with each objective
bit that is received.

2. A machine learning program with bounded computing time and memory,
that tries to reconstruct the finite structure of the black box. Here our
subjective information grows in an irregular but monotone way with each
bit of objective information that is received.

3. An infinite database with a list of bits recording every bit that is received.
Here our subjective information grows with exactly 1 bit per bit that is
received.

This example shows that we can not restrict ourselves to a purely subjective
interpretation of information when we analyze a source of messages. We need
to make an a priori decision about the nature of our source. These issues (sub-
jective versus objective probability, regularity versus randomness, information
versus meaning) are far from resolved and should be at the center of a philo-
sophical research program of a philosophy of information.
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The cooperative universe

Why do we live in a world that is intelligible at all? This question pervades
philosophy from its early conception on (Herakleitos vs Parmenides). In form
of a sweeping statement: prima facie, the god of Leibniz might very well have
created a universe in which the Minimum Description Length principle would
not hold. There seems to be no theoretical necessity to favor simplicity. The
extreme regularity of the universe could be a ’local’ condition accidentally ob-
served by us. In terms of modern information theory: every infinite random
string has an infinite number of regions of extreme regularity. If we transpose
this idea to the analysis of our world we might just accidentally live in such
a regular region in a purely random universe. Li and Vitanyi [1992] A rather
horrifying thought.

On the other hand imagine the following thought experiment: an infinite
set of universal Turing machines working in parallel with input tapes that are
created by means of some random process (e.g. flipping a coin). The set of
input tapes is infinite so every finite prefix free program will occur an infinite
number of times. Yet the density of ’shorter’ programs will be exponentially
higher than that of ’longer’ ones. Some programs will run for ever, others will
stop in finite time. After n time steps a number of ’simple’ programs will have
stopped and produced a fixed output. This means that the set of outputs we
observe in this thought experiment will have a strong bias for simplicity. In other
words even a universe that consists of purely random computational processes
has a strong bias for simplicity. The distribution of phenomena it produces is
cooperative in the sense that we get examples of the simple structures first. In
such a universe MDL therefore might be a viable methodological principle. It
coincides with another well known dictum of Einstein: God is cunning, but he
is not malicious. (! ref). The exact relation between various computational
models of the universe, cooperative distributions, the universal distribution m
and the problem of induction is, in my view, one of the most important open
problems in the philosophy of information.

Related philosophical problems

There are a number of issues that are tangential to problems in the philosophy
of information. I do not consider them to be part of a philosophy of information
per se, but they tend to be part of current philosophical debate. I mention four
of them.

e Information and Virtual Reality. The idea that the mind can be fooled
in to a purely subjective experience of reality without any objective sub-
stratum is is a recurring philosophical theme since Descartes. With the
emergence of multimedia technology this possibility has gained new actu-
ality. Some philosophers argue that with high probability we already live
in a virtual reality (Nick Bostrup? ! Ref).

e Discrete versus continuous models. If our universe is continuous it can
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never be adequately modelled in terms of computational process. Quan-
tum physics seem to imply that the the physical world is essentially dis-
crete, but quantum mechanics itself is still object of fierce philosophical
debate.

o Information and ethics. Being ethical seems to imply a certain obligation
to give the right information. In this sense an understanding of the phe-
nomenon of information has ethical implications. Some philosophers have
tried to develop an ethics of virtual reality (Ref !!!)

o Information and esthetics: Our brain is an information processing device.
There is evidence that our subjective experience of beauty can at least
partly be explained in terms of information processing. The notion of
idealization in art for instance can be interpreted in terms of two part
code optimization.

5 Conclusion

It seems that the ambition to break codes, decipher messages, encode informa-
tion, resolve conflicts between sources of information and combine data from
different sources in a military context has been a driving force behind the emer-
gence of the modern scientific notion of information. Another motivation for
the scientific study of information was the development of new technologies for
communication: telegraph, telephone, radar etc. These technologies confronted
engineers with practical problems like noise, redundancy, multiple signals over
one channel and efficient coding systems. Last but not least, the tremendous
impact of the second world war on the development of the electronic computer
for military purposes is well-known.

The modern notion of information is a creation of the joint effort of soldiers,
spies, politicians, physicists, mathematicians, engineers and philosophers. The
influence of mainstream philosophy on this process is limited. The impact of
theory of information on philosophy is fundamental, not only in disciplines like
methodology of science and theory of knowledge, but also in ethics and esthetics.
Term ’information’ has made a remarkable historical u-turn. It started as a
technical term in antiquity, found its way to colloquial speech in modern times
and then gained a completely different technical meaning in a military and
political context at the end of the 19th century. With a new formal foundation
developed in the 20th century it started to influence philosophical thought again
as a fundamental discipline.

If we look at Kant’s famous three questions: "What can I know?’ What
must I do?” and "What can I hope for?’ then the first question at least par-
tially involves a reflection on information. It is also immediately clear that a
philosophy of information never can replace the whole of philosophy, since the
concept of information gives us at best very limited assistance when pondering
the second and third question. According to Kant philosophy should not reach
for knowledge of the transcendent but it should be transcendental: i.e. it should
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study the necessary a priori conditions for the possibility of knowledge. In a
surprising way modern information science opens a fascinating perspective on
such a program for a methodological foundation of the sciences. This program
might be somewhat removed from Kant’s original ambitions, it is certainly tran-
scendental in the sense that it allows us to formulate a priori conditions for the
possibility of the growth of scientific knowledge with unprecedented mathemati-
cal precision and clarity. If one adopts *the computational view’ a number of new
and powerful solutions to age old philosophical problems present themselves.

An example: if one lives in a world in which events are generated by com-
putational processes than the Solomonoff-Levin distribution (or universal dis-
tribution) assigns an a priori probability to events. This probability is related
to their computational complexity. This gives us an entirely new perspective
on Hume’s induction problem, the study of heuristic search and the analysis of
human creativity and learning.

Another example: the concept of ’cognition as computation’ allows us to
formulate a partial a priori answer to the question of what can be known. In
order for something to be knowable it must be computable. We have deep results
on what can be computed and what not. We also know a good deal about the
complexity issues involved.

A third example: modern logic studies epistemic logics, dynamic logics, non-
well-founded set theory, update logics, belief revision systems and a myriad of
related formal systems that give us an entirely new perspective on the questions
of what can be known and what we could believe and how these questions are
interrelated.

In this context a philosophy of information can be characterized along three
dimensions:

e Foundational Nature: As soon as we think, reason or talk about real-
ity, elements of information and computation are involved. Rationality,
Computation and Information seem to be intertwined.

e Transcendental Nature: fundamental aspects of human knowledge can be
brought under the rigor of mathematical proof, stipulating what is possible
and what not.

e Fundamental Openness: there is no closed interpretation of the world.
There is no universal heuristic method. There is no optimal heuristic
method of Science, art and philosophy are open disciplines of potentially
limitless complexity

Of course the question whether the ’computational paradigm’ is correct is
a matter of philosophical debate. This debate however can never be conducted
properly without a thorough analysis of the philosophical issues involved. It
would also be superficial to address these problems without a deeper under-
standing of the role of information and computation in various sciences like
physics, mathematics, biology, linguistics and cognitive science. In each of these
disciplines ’information’ and ’computation’ play a vital role, but prima facie in
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very different ways. There seems to be no direct route from the study of the ab-
stract notion of information to practical results in these disciplines. The study
of information has a definite empirical component as it takes a different guise
in various parts of reality: physical, biological, social or psychological. At the
same time progress in modern science depends critically on the use of computers
to manipulate large quantities of data, to facilitate co-operative work between
groups of scientists and to calculate the consequences of complex models of sub-
structures of the world around us. This last observation gives a very practical
motivation for a foundational study of the computational paradigm’. In an even
broader perspective it is clear that the use of computers has a profound influence
on our cultures and our societies. Computers change the way we communicate
and the way we work. They affect our art and our science and ultimately the
way we think about our self.
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