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Abstract. In this short note, we discuss a few senses in which logic
represents natural language and natural reasoning and then fan out to a
broader perspective on applied logical analysis.

1 Introduction

The discipline of logic started when thinkers in Antiquity noticed recurrent
patterns in valid and invalid inferences occurring in reasoning practices
and found that these could be studied as such. Since reasoning usually
takes place couched in natural language, a medium whose syntax serves
many further functions, these reasoning patterns were made explicit using
special notations for logical forms. In modern logic, logical forms live in
formal languages with a complete syntax and semantics that start looking
like full-fledged alternatives to natural language, a line taken in the famous
‘equality in principle’ thesis for natural and formal languages in Montague
1974. This raises the issue of what logical systems model or represent, and
we will phrase the following discussion in these terms, though we will also
question the full-language methodology in the end. Our light discussion will
gradually draw in the choice of semantic structures and other basic themes
in the design of logical systems.

2 Logical syntax and representing natural language

Patterns. The emphasis on discovery of patterns is a common theme in
studies of the historical origins of logic and other academic disciplines, cf.
Bod 2022. And one might think that these patterns are linguistic, since they
were presumably extracted from natural language, our common medium of
expression and communication. But how should we think of the matching of
natural language ‘in the wild’ with designed logical patterns?

Syntax. Consider the common didactic practice of training students in
‘translations’ of inferences stated in natural language in some formalism such
as first-order predicate logic. We can think of this as projecting natural
language into a simpler language of forms that highlight just the structure
that is relevant to inferences. The Latin diminutive ‘formula’ is particularly
apt here in its literal meaning of ‘little form’, as we are aiming for simplicity.
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Grammar and simplicity. Yet, what simplicity means is a vexed issue,
and at the level of syntax alone, not that much comes to mind. One might
compare the length or other measures of syntactic complexity of natural
language sentences with that of their formula translations, though I am
not aware of significant results in this direction. Indeed, logical syntax
can even add space-consuming devices that do not occur overtly in natural
language expressions, such as scope indications and variable binding. On
the positive side one could see these extras as logical syntax modeling not
just expressions, but broader linguistic mechanisms. Variable binding offers
a simple model for anaphora and discourse coherence, and thus its more
intricate structure beyond natural language surface syntax comes with its
own benefits.

Another angle on syntactic simplicity places the focus on grammatical
complexity. Grammars for formal languages are usually context-free: cf. van
Benthem 1988, a study of logical syntax, for details—and exceptions. In
contrast, grammars for natural languages are often context-sensitive, that is,
higher up in the grammatical Chomsky Hierarchy of complexity.

But arguably, the simplicity and utility of logical formulas rather has
to do with their uses, namely, their function in analyzing or recognizing
inferences. We now turn to this angle.

Proof systems and text grammar. In the above reconstruction of
historical origins, the point of logical formulas is their role in making the
structure of inferences explicit. Formal notations such as, say, “A or B,
not-A ⇒ B” do just this, with sentential variables A, B for parts of a
possibly much more complex linguistic expression whose precise nature does
not matter, and a focus on the specific logical expressions of disjunction and
negation that do matter to the validity of the given inference, cf. Bolzano
2014, Bonnay & Westerst̊ahl 2016.

In doing so, we extend the above view of sentence grammar to one of
text grammar : the logical structure of sequences of sentences involved in an
inference. When chaining individual inferences into more complex proofs,
this text grammar also brings its own technical notions that may go beyond
natural language texts, such as long-distance dependency management of
conclusions on assumptions in natural deduction, cf. Prawitz 1965.

Variety. One striking feature of the logical study of proofs is the variety
of available systems, from Hilbert-style axiomatic to many styles of natural
deduction. One can think of these as different computational implementa-
tions of deduction for practical purposes, but one can also take them more
realistically. They are then proposals for representing a particular style of
reasoning, a claim suggested by the terminology ‘natural deduction’. I am
inclined to the latter view, but the criterion of success for such claims is
not always clear, since logical proof systems are also meant as a tool to be
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learnt, and improve a given reasoning practice. Thus they exhibit the same
two faces as the discipline of logic itself, harboring both descriptive and
normative aspects in its ambitions, a tension that I will mostly ignore here.

Digression: natural logic. The idea that formal languages are indispens-
able for analyzing inference in natural language has not gone unchallenged.
The program of ‘natural logic’, van Benthem 2008, Moss 2015, uses natural
language syntax as is to represent some inference practices in ways that are
simpler than the usual logical representations. The issue then shifts to when
it becomes more profitable to make the transition to formal logical modeling.

Meanings: inferential and semantic. The discussion so far may suffice
for an inferentialist who holds that proof rules determine the meanings of
logical expressions. But I myself think semantically and want an independent
analysis of meanings, if only, to judge whether a proposed proof system
makes sense. What follows will be a semantic perspective bringing to light
further plurality of representation in logic. Even so, many of the following
themes may also make sense in a purely proof-theoretic treatment which I
do not pursue here.

3 Logical semantics and representing natural language

The usual translation exercises in logic courses do not seem to be purely
syntactic, as the first-order language used comes with an intended semantics
that involves two features.

Semantics 1: Conceptual frameworks. One component of a semantics
is a structured view of what the described reality looks like. In a common
view of predicate logic, these are models with a domain of individual objects
and predicates and functions over these. This can be seen as a proposal for
a conceptual framework for natural language and inference. And as such,
it is a choice of representation since natural language does not force us to
think in just this way. In fact, some philosophers and linguists have rejected
an ontology with individual objects as primary citizens, cf. Keenan & Faltz
1986. And even for formal languages, logic itself has an alternative in the
long-standing algebraic tradition, Sanchez Valencia 2004, that works with,
one might say, domains of concepts with various interrelations, and only
admits underlying objects for the algebras if these can be introduced through
representation theorems.

Variety is the rule in logic. The preceding is not a criticism of the
standard Tarski semantics for predicate logic. The latter has proved a widely
useful representation for human inference, for automating reasoning, and
for proving results stating deep insights into the metatheory of reasoning
with predicates and quantifiers. The point is just that, as with any proposed
representation, there can be attractive alternatives. There are many further
examples of such framework options in logic, especially when we turn to
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modal expressions that go beyond the static here and now. For instance,
many formats exist for representing the pervasive temporal reasoning in
natural language: tense logic with Past and Future operators, interpreted on
points or alternatively on intervals, but also different logical forms provided
by a two-sorted predicate logic over points in time, or yet other structures,
cf. van Benthem 1995.

Semantics 2: Mechanisms of interpretation. The second fundamental
aspect of a semantics is how it makes the connection between the syntax
of a language and the intended models. Famously, for predicate logic, this
interpretation mechanism is compositional and based on Tarski’s notion of
satisfaction which involves assignments of objects to variables as ‘states’ of
the interpretation process. And yet again, there are alternatives to such
a package of type of models plus type of interpretation mechanism. For
instance, dynamic semantics, cf. the survey Nouwen, Brasoveanu, van Eijck &
Visser 2016, has an alternative more procedural view of what happens when
we interpret expressions with anaphora, and there are yet other attractive
formats, such as discourse representation theory, Kamp & Reyle 1993, or
game-theoretic semantics, Hintikka & Sandu 1997. What all these examples
make abundantly clear is that logic can also model many different views of
the semantic interpretation process.

Compositionality. These options also illustrate another virtue of logical
modeling. A general analysis and design principle for semantic interpretation
of all the above kinds is compositionality, Baltag, van Benthem & Westerst̊ahl
2023. Logical languages are both the origin and the most perspicuous
illustration of how this methodology works. Moreover, it is their abstract
simplicity that helps us develop a range of compositional interpretation
procedures.

4 Task dependent representation: Functions of natural
language

Our discussion so far has left out an important parameter. Representation
is usually there for some purpose, and its adequacy can depend on that
purpose. Now natural language has many different functions, and so far we
have only encountered two of these.

World description. Natural language is a medium for describing what the
world is like, or what the language users take the world to be like. Predicate
logic offers a model for that function: its language represents the structure
of natural language sentences describing situations in the world, while its
models are a way of representing those situations.

Theoretical terms. The simple term ‘description’ quickly gets more com-
plex when we move away from simple situations in the world and look at
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the many theoretical terms in language. When we call a person “friendly”,
we do not assign an observable property, but express a complex expectation
about behavior of that person over time. And explicit modal expressions like
“believe” even populate the physical world with ‘constructs’: unobservable
mental attitudes that serve as postulated theoretical terms to make sense
of human behavior, van Benthem 1983, just as physicists postulate forces
or fields in their theories to make sense of observable reality. Thus, the
conceptual framework of a semantics may also include quite complex abstract
notions that shape our perspective of, and expectations about the world.

Inference. However, this note started with another function of natural
language, namely, as a vehicle for inferences. It is not obvious that the
same logical forms that help analyze inference are also optimal for describing
the world. Already van Benthem 1987 asked why it is that the same
representation in formulas of predicate logic works so well for such different
purposes. Even so, divergences do exist in logic, for instance, with the use of
Skolem forms in resolution theorem proving, which are not easily humanly
interpretable, Robinson 1965.

Communication and coordination. A third crucial function of natural
language that has attracted attention from logicians is communication. Again
it is not obvious why the logical forms that serve description or inference
would also serve this further purpose. And indeed, current dynamic-epistemic
logics for communication employ additional logical operators for information
updates that have no direct counterparts in natural language, Baltag &
Renne 2016. We will not discuss the representational role of the latter logical
forms here.

Beyond information. Communication is a way of coordinating behavior
which involves more than the informational focus of logical modeling. Suc-
cessful communication is at the same time a way of agenda management,
achieving goal alignment, and even of achieving the emotional resonance
that is crucial to understanding, learning, and shared agency.

5 Connecting representations to what they represent

From natural to formal languages. What is the connection between
natural language and logical formalisms designed for functions like those
discussed above? One might think that this is just an art of modeling based
on experience, but sometimes more can be said.

Translation. Logic texts often use the term ‘translation’ from natural
into formal languages, but this may suggest too much. A predicate-logical
formula is seldom a faithful rendering of a natural language sentence, except
for the simple type of discourse of the “Mary knows John” type one finds,
for instance, in factual data bases, or in simple natural language processing.
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Paraphrase. For many other purposes, one can view a logical formula as
a paraphrase of a natural language sentence, geared toward representing
the essentials needed for a particular task. Examples of this abound in
work on ‘logical AI’, McCarthy 2001, where the logical text describing the
relevant content of a problem to be solved may diverge considerably from
what the natural language version says, both qua formula structure and qua
arrangement of the text. This paraphrasing ability is much more widespread
and useful than translation skills, and while it cannot be made algorithmic
like translation, it can be trained and honed.

Maintaining harmony. One can also juxtapose natural language and
representing logical formulas without any claim of intrinsic adequacy except
for demanding that actions in the two realms should stay in step. The
latter view is made more precise in the analysis of logical modeling in Moss
& Westerst̊ahl 2023. The authors assume that natural language sentences
describe ‘situations’ or ‘scenarios’, seen as parts of the world, or as empirically
real mental pictures that we form of the world. We are then free to connect
sentences with formulas and situations with models in any way we like, but
the criterion of adequacy is the harmony expressed in the following diagram,
whose arrow structure should commute:

Sentences Formulas

Situations Models

description

paraphrase

truth definition

represent

Starting with a sentence or text, if we first move to logical formulas at
the bottom and then, staying in the logical realm, follow the formal truth
definition in logical models upward, we should get the same effect as first
following the informal description upward in the empirical realm, and only
then follow the representation into logical models. Here the arrows can
also stand for relations rather than functions, with ‘truth in a model’ as
an obvious example. This leaves much more freedom for how the logical
theorist decides to make connections.

Note that a commuting diagram for just one concrete sentence and
formula can be constructed entirely ad-hoc. To make the analysis do real
work, we will want to demand commutation for all representation pairs in
some family to be specified in the intended application.

Similar attunement diagrams make sense for inference, where logical
inferences between formulas should track actual reasoning steps in natural
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language. And they can also be used to check whether proposed formal
update mechanisms track real information flow.

General tracking. Now this perspective might be considered ‘behaviorist’
since we do not apply any criterion of intrinsic resemblance, but only demand
that representations stay attuned to the empirical practice they are modeling.
But this generality is also a virtue. Indeed, the preceding methodology, which
can be made precise in a general category-theoretic setting, applies to a wide
range of forms of ‘tracking’ one system with the aid of another.

Connecting situations and models. The preceding diagram raises a
further question: what connects real structures like situations or scenarios
with the models in a logical semantics? There are many candidates in the
literature, from isomorphism to weaker simulations or embeddings. We
will discuss these later under the heading of transformations and invariants.
But as with the above paraphrasing, assigning formal models to real-world
scenarios may be something of an art based on experience, rather than an
algorithmic procedure.

6 Equivalences within the logical language

Next we move to representation inside logic itself, as there are also substantial
issues here.

From formulas to propositions. Once inside the realm of logic, perhaps
the major theme for a logical system is exploring the valid laws governing
reasoning in the domain under study. This adds a complication to our earlier
discussion. We may have suggested so far that the representing object for
a sentence is literally the logical formula associated with it, in any of the
manners outlined in the preceding section. However, the valid laws of a
logical system induce a notion of equivalence between formulas, and thus,
the real logical object doing the representing is the structure underlying
that equivalence class. In common philosophical parlance, we are after the
proposition expressed by these equivalent formulas.

Alternative logics. This perspective raises deep issues that run through
the logical literature. Which notion of equivalence is appropriate to the
external domain being represented? For instance, does a sentence of the form
not-not-S express the same proposition as sentence S? The answer is positive
in a classical truth-oriented perspective, but negative when representing a
constructive mathematical practice where negation means refutation. One
can construe logical proposals for dealing with constructivity, or in recent
years: hyper-intensionality, as offering different, less or more fine-grained,
views of what one takes to be the relevant structure of propositions. These
alternatives may arise with different choices of semantic frameworks, when
e.g., truth gets replaced in favor of ‘support’, or they could have more
proof-theoretic motivations, as is the case for various constructive logics.
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A landscape of levels. The resulting variety forms a landscape where
different systems focus on different ‘levels of grain’ in representing their
object of study. This variety can even arise when we fix one particular formal
language, say the standard one of propositional logic. At one extreme one
can find coarse representations of propositions as sets of worlds, at another,
the very syntax of the logical formulas themselves. This landscape is not
linearly ordered, and has many gradients: sets versus topologies, qualitative
versus quantitative, and so on.

The above is just a very brief summary of some well-known facts about
logic. I stated them merely to emphasize their relevance to how we can
represent empirical practices, and as background for the following points
that are sometimes neglected.

Freedom in language design. A multi-level landscape of options is
entangled with the design of logical languages. More fine-grained representing
structures can interpret richer logical languages, so the issue should not just
be strength of identification but also the medium of representation. Some
literature on alternative logics ignores this point, focusing on one standard
language, say, of propositional logic, without raising the question whether
this formal language is the best medium for the semantic picture one is
advocating.

To me there is a serious conceptual desideratum of expressive harmony
between a semantic framework and the logical language one chooses to access
it with. And this harmony is also important technically: infelicitous lan-
guage design can make proof systems for validities opaque and completeness
extremely hard to prove, merely by self-imposed restrictions.

Co-existence instead of competition: translations. A next point to
note is that there need not be a ‘right’ representation for a given reasoning
practice in this landscape of options Many languages and models may make
sense, and what logic then offers is a total systematic picture. But there is a
force for coherence in logic, in terms of a web of systematic translations and
other forms of correlation that run across and facilitate commensurability
for many logical systems.

No preferred direction. Next, there is no preferred direction for design
in the landscape. In the history of science, coarsenings have proven just
as fruitful as refinements. Compare the coarser qualitative perspective of
Topology with the detailed quantitative level of Analysis. Coarser levels can
highlight essentials that were invisible down below, such as the simplicity of
continuous maps in Topology versus the epsilon-delta definitions in Analysis.
For a more philosophical example, a ‘hyper-intensional’ logic is not automat-
ically better than a ‘standard modal’ one: each may offer insights at its own
level. I myself would even say that, if hyper-intensional logics had come first
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in history, there would have been a later major discovery that it also makes
sense to throw away detail and introduce the standard modal logics.

Syntax from ‘what’ to ‘how’. My third and final point concerns pure
syntax, usually seen as a non-contender for the structure of propositions.
However this may be, syntax represents something essential, even when
logical equivalence identifies different formulas. Despite such validities, say,
“not-(P or Q)” and “not-P and not-Q” are different ways of getting to the
same denoted proposition. This ‘how’ can be seen clearly in the evaluation
games associated with different formulas in game-theoretic semantics, and
the various strategies that players have in these, which give different reasons
for the truth of a formula in a given model. This combination of ‘how’ and
‘what’ seems crucial to our use of language.

Aside: computing. Syntax is also essential to computation, which needs
code. While the algebraic terms x+ x2 and x2 + x always denote the same
number, they correspond to different procedures for producing that number,
and in general some procedures can be more perspicuous or efficient than
others. It has even been suggested that such algorithmic differences are
crucial to an algorithmic understanding of the Fregean notion of ‘sense’,
Moschovakis 1993.

7 Invariances among logical models

Having discussed equivalence in logical syntax, let us now turn to equivalence
in logical semantics. Formal models as they stand are seldom the true
structures one has in mind. Models usually come with invariance relations
that leave ‘the same structure’ intact. The standard example is isomorphism,
which says that it is immaterial to the structure which actual objects do the
representing. Accordingly, logical formulas will be true for objects in one
model iff they are true for the images of those objects under an isomorphic
map to another model. This requirement is even part of the definition of a
logic in Abstract Model Theory.

Invariance relations. But as with logical equivalence, there are many op-
tions for invariance relations between models, depending on what underlying
structure is the focus of interest. Isomorphism is a very fine sieve, but, say,
in modal logic, a much coarser identification is often taken to represent the
crucial accessibility structure of patterns of possible worlds or process states,
namely, some form of bisimulation, Blackburn, de Rijke & Venema 2001.

Erlanger Program. This variety matches practice in mathematics, in a
tradition going back to the Erlanger Program, Klein 1872. A mathematical
theory describes structures that come with a group of designated transforma-
tions that define when two different manifestations of that structure are ‘the
same’ from the perspective of the theory. For instance, Euclidean Geometry
looks at spaces under the standard transformations of translation, rotation
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and reflection, while Topology identifies spatial structures under the much
coarser notion of homeomorphism. Both perspectives have their uses, neither
is ‘better’ than the other.

Systematic attention to the role of transformations and invariance is
less common in the philosophical or linguistic literature. But it does occur
implicitly when we realize that an ontology needs to come with a ‘criterion of
identity’ between objects, Noonan & Curtis 2022, or perhaps better: between
different semantic ways of getting to the same structure.

8 Connecting logical languages and logical models

Invariants and the emergence of language. The two main perspectives
in the preceding discussion, formal language and semantic models, are
intimately connected. Given any notion of transformation between structures,
there will be invariants: predicates whose truth is not affected by moving
from objects in one model to those in another model related by a transfor-
mation. Already Helmholtz 1883 saw such invariances as crucial to the
genesis of languages, since languages will tend to express patterns that we
reuse in different manifestations of the same empirical situation or scenario.
This theme underlies the above Erlanger Program and the ubiquity of
invariance in physics and other disciplines, Suppes 2003. In philosophy, the
theme also occurs occasionally, as in the situation theory of Barwise & Perry
1983 with its emphasis on the informational constraints that structure our
world.

Logical languages and invariance. The harmony of semantic invariance
relations between models and language design is especially clear when we
analyze, not just deductive power, but expressive power of logical languages.
We can think of these languages as designed to describe invariant properties
and predicates in one’s semantics. One part of this match is the persistence
of truth or satisfiability of logical formulas under the relevant invariance
relations between models, the other, usually deeper, direction is ‘expressive
completeness’ results showing when the logical language can define all
invariant predicates. We will not elaborate this theme, but refer to the
model-theoretic literature, cf. Hodges 2020.

Once more, we conclude that in logic, language design and choice of
semantics go together.

Caveat: Two senses of representation. The preceding sections moved
away from the original issue in this note. We started with a practice of
language use and reasoning, and how logic-internal notions represented
these external empirical ones. But then we shifted to internal issues such
as whether a given logical formula represents its underlying proposition,
or whether a concrete model represents the equivalence class defining its
structure. We believe that these issues still form a whole by composing the
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two senses of representation. Logical formulas represent natural language
sentences, but at the same time they represent logical propositions, so they
are a connecting locus between sentences and propositions. And likewise,
specific models mediate between actual situations and abstract structure.

This concludes our brief discussion of modeling and representation in
logic. What follows is an afterthought questioning the standard ‘formal
language package’ view we took for this.

9 Coda: piecemeal merging versus global juxtaposition

In this paper, we have mainly compared complete natural languages or rea-
soning practices with the architecture of entire logical languages, semantics,
and proof systems for modeling these empirical phenomena. In this final
section, we briefly outline an alternative view.

For a start, we could also see the task of logical analysis as piecemeal
problem solving, which comes with a range of formal solutions as required
by the occasion.

Reasoning challenges. Here is a well-known example from the psychology
of reasoning:

Fifteen farmers own at most thirteen cows each. Does it follow that
at least two farmers own the same number of cows? (Mercier, Politzer
& Sperber 2017)

Experimental subjects turn out to be hard-pressed to justify an answer.
What definitely does not work is transcribing the sentence and the putative
conclusion into straightforward logical formulas as we suggested above and
then applying formal deduction. The key to solving this problem is finding
the right way of thinking, or more concretely, a good representation which
makes us see the answer in a simple manner. In this particular case, we
need to see the problem as an instance of the Pigeon Hole Principle that, if
we put k objects into n boxes, where k > n, at least one box will get two
objects. In the given case, there are 14 boxes, the number of cows a farmer
can own, ranging from 0 to 13, and we place 15 farmers in them.

First representation, then calculus. This example is typical for actual
reasoning problems. The difficulty is usually not applying the deduction
or computation rules of some calculus, but the prior step of representing
the given problem in a way that makes its solution via that calculus easy
or at least feasible. And such a representation may work for some but
not all problems, so uniform approaches via logical languages and proof
systems seem off the mark. What we need then is a repertoire of different
representations that help piecemeal with actual scenarios, an ability we can
train by just learning and understanding more examples.
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Aside: logic and counting. In this piecemeal view, logic still makes sense.
Inference patterns codified in logic do occur widely, witness the literature
on philosophical or computational logic. But what the preceding example
suggests is that reasoning patterns involving counting may be just as basic,
a thesis developed in much more detail in van Benthem & Icard 2023. There
does not seem to be an obvious priority for logic over arithmetic here.

Hybrids and merges. But there is also a further issue. Problem solving is
local in that only a few well-chosen formulas are needed as paraphrases, and
only a few relevant inferences need to be drawn. And we do not move entirely
into a formal world of derivation and computation with these, leaving the
natural language formulation of the problem behind. Indeed, instead of
complete and separate natural and formal languages, we can also think of
illuminating paraphrases for a problem as hybrids of natural language and
logical formulas, in the same way as the language of mathematical research
is a hybrid of the two.

Dynamic interactions. Well-understood, even the earlier diagram from
Moss & Westerst̊ahl 2023 fits this view. While the diagram suggests a strict
separation of empirical and logical realms, it can also be seen as making a
methodological distinction. In reality, there may be a dynamic. A successful
formal analysis may influence natural language practice, and some of its
notions and notations may make their way into our ordinary linguistic
repertoire.

The virtues of hybridity. Perhaps the term ‘representation’ is then no
longer appropriate, as this suggests a separation between what represents
and what is represented. The question rather becomes if logic can help
improve our linguistic and reasoning practices, just as mathematics does.
I believe that the looser hybrid view is much closer to how logic is used
in both mathematical and philosophical practice. The hybrid language
of mathematical research and for that matter, of philosophy papers using
logic, is a fascinating flexible medium which combines the virtues of both
formal and natural languages. The formal components provide precision
as needed, but the embedding in natural language makes sure that texts
build up interest and shared purpose. The natural language also allows
for paraphrasing and explaining formal proofs at higher less detailed levels
increasing our understanding of what makes the formal level tick. I believe
that the study of the fascinating mixtures of natural and formal has been
neglected in contemporary logic, semantics, and philosophy of language.

10 Conclusion

We have discussed the basic senses in which logic can be said to represent
natural language and natural reasoning, involving both syntax and semantics.
We then moved to the role of representation inside logic in one picture of
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semantic invariance and logical language design. We did not present any
grand conclusion from all this. Our discussion was rather meant to highlight
the variety of representations available in logic, which fits well with the
variety of tasks that logic can be applied to. A multi-thread narrative like
this seems closer to the realities of applied logic, and if nothing else, it
may create awareness of the debatable presuppositions in innocent-looking
terminology such as ‘the logical form’ of sentences.

One theme has been ignored in this paper. Logic is not just meant to
faithfully describe reasoning as humans perform it, it is also a normative
discipline offering standards. Without the driving force of correction, human
intellectual progress would be unimaginable. The latter theme has been
ignored in my discussion, but logical representation also has the potential,
and perhaps even ambition, to enlighten and where needed, improve practice.

Acknowledgement. I thank Dag Westerst̊ahl for his comments on a draft
of this paper.
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