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Abstract. The requirement of total evidence says that one should condi-
tionalize one’s degrees of belief on one’s total evidence. In the first part I
propose a justification of this principle in terms of its epistemic optimality.
The justification is based on a proof of I. J. Good and embedded into a new
account of epistemology based on optimality-justifications. In the second
part I discuss an apparent conflict between the requirement of total evidence
and political demands of anti-discrimination. These demands require, for
example, that information about the sex of the applicant for a job should
not be included in the relevant evidence. I argue that if one assesses the ap-
plicant’s qualification in terms of those properties that are directly causally
relevant for the job performance, then properties that are merely indirectly
relevant, such as sex, race or age, are screened off, i.e., become irrelevant.

So, the apparent conflict disappears.

1 Introduction

The requirement of total evidence—henceforth abbreviated as RTE—says

the following:

In order to rationally estimate the epistemic probability (P)
of a hypothesis, one should conditionalize this probability
on one’s total evidence, i.e., all ‘relevant’ evidence that is
available to the epistemic subject. Thus, if F is the subject’s
total evidence, then Pyctua (H) = P(H|E).

Thereby the evidence E is assumed to be ‘approximately certain’.

(RTE)

1

Among others, the RTE was introduced by Carnap (1950, 211f.). If the
hypothesis is a singular prediction, Fa, the RTE coincides with Reichen-
bach’s principle of the narrowest reference class, which says that we should
conditionalize Fa’s probability on its membership in the narrowest (relevant)
reference class for which we possess evidence (Reichenbach 1949, sec. 72).
That the evidence can be restricted to relevant evidence is obvious, since
irrelevant evidence does not change the probability and can be omitted, i.e.,

P(H|Ere1 A Eirr) = P(H|Erel)~

LFor uncertain evidence, Jeffrey conditionalization has to be applied:

Pactual(H) = EiEP(H‘ + E) . Pactual(:tE)-

”»

(The notion “¥1g” is explained in the text.)

Models and Representations in Science, edited by Hans-Peter Grosshans.

Comptes Rendus de l’Académie Internationale de Philosophie des Sciences 3 (2025).

G. Schurz, The requirement of total evidence, pp. 209-225.
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Why is the RTE reasonable? It is certainly necessary to fix the evidence
on which we conditionalize somehow, because otherwise we may end up in
contradictions.?2 But why should this be the most comprehensive evidence?
Why is it not better to leave evidence out if we do not like it? In what
follows we illustrate our problem at hand of a simple weather example, as
follows:

1. R denotes the prediction that it will rain tomorrow in my area.

2. The probability of R, P(R), is assumed to be implicitly conditionalized
on given the general background evidence that we live in a sunny area
with a 20% rain chance. So we assume P(R) = 0.20 and P(—R) = 0.80.

3. F denotes the additional evidence that the barometer has fallen, indi-
cating a rain-chance of 95%, even for areas that are normally sunny.

Our assumptions entail that P(R) = 0.20, but P(R|F) = 0.95. So we
must fix the evidence on which we conditionalize our probability of the
hypothesis, R, in order to avoid probabilistic incoherence. But why should
we conditionalize our prediction on the total or most specific evidence, F'?
Why should we not rather be coherentists and stick with conditionalizing our
belief about tomorrow’s weather on our general background evidence that
we live in an overwhelmingly sunny area, ignoring the additional evidence F,
so that we are not forced to give up the friendly-weather-belief that we like?

Hempel (1960, 453f.) and Suppes (1966) argued that for a Bayesian
probabilist, who identifies her or his degrees of belief with rationally estimated
probabilities, the RTE follows already from the probability axioms, or
equivalently, from the requirement of probabilistic coherence. For P(A) =1
implies P(B) = P(B|A) (since P(A) = P(A|B)-P(B)+ P(A|-B)-P(-B) =
P(A|B) -1+ P(A|-B) -0 = P(A|B)). So given the evidence F' is taken
as certain, then P(R) = P(R|F); so our coherent degree of belief in the
hypothesis R must already be conditionalized on all evidence that is taken as
certain. Likewise, if F' is almost certain, then provided P(R|F) is not close
to zero, P(R) must be approximately equal to P(R|F). Roush (forthcoming,
31, fn. 47) considers this argument as an advantage of Bayesian probabilism.
From the viewpoint of applied epistemology, however, I think this argument
is insufficient, since real epistemic agents are far from being probabilistically
omniscient. What people really do when estimating the probability of a
future events, such as the possibility of tomorrow’s rainfall, is retrieving
from their memory some known facts that are regarded as relevant cues for
this prediction, and then estimating the predicted probability conditional
on the conjunction of these cues. For this epistemic practice the RTE is

2In application to explanations, Hempel (1965, sec. 3.4) spoke of the “ambiguity of
statistical explanations”.
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highly important, because it requires that instead of confining oneself with
just one or a few cues, one should actively retrieve all relevant cues that one
knows. For example, if you base your prediction on a weather forecaster
on the Internet, but there is a second forecaster that predicts differently (a
situation that does not occur unfrequently), then the RTE tells you that
you should not just rely on one forecaster and ignore the other. Even for
rational Bayesians, the RTE is not self-evident, because Bayesianism does
not prescribe how an epistemic agent should mold her or his probabilities.
For coherentist Bayesians, ignoring a piece of evidence F' when estimating
the actual probability of a prediction R just means that they change their
probability of F' from a value close to 1 to some lower value. Why should
such a ‘probabilistic suppression’ of an unwanted fact not be a legitimate
epistemic practice, for the mutual sake of increasing the coherence of our
beliefs and desires? Why are we worse off if we follow this practice rather
than follow the RTE? Moreover, why is searching for new (cheap) evidence
better than applying the ostrich-method of avoiding the acquirement of new
evidence (putting one’s hat in the sand)?

To obtain a positive answer to these questions, we need an explicit
justification of the RTE. Moreover, recall that according to Reichenbach’s
ingenious idea the justification of the RTE would at the same time tell us
how the statistical (or frequentist) probabilities of repeatable events should
be connected with the epistemic probabilities of single instances of these
events. The above weather example is nothing but such a connection: the
statistical chance of rain (Rx) in some reference class (Cx), abbreviated as
p(Rz|Cx), is transferred to a particular day, namely tomorrow (a), as the
epistemic probability of a rainfall tomorrow: P(Ra) = p(Rz|Cz) (where “Cz”
is a condition that refers to the past of x, logically expressed by a functor,
Cx = Gfx). The reason why we want a connection between epistemic
and statistical probabilities is simple: only if there is such a connection,
will the probabilistically expected utilities—which are the central guide for
rational decisions—agree with our actually experienced average utilities (in
the long run); otherwise maximization of expected utilities could fail to be
actually utility-increasing. However, there are different possible reference
classes Cx—in our example that I live in a sunny area, that the barometer
fell yesterday, etc. Which reference class should we choose? According to
Reichenbach’s “principle of narrowest reference class”, we should identify
the epistemic probability of a single case hypothesis with its statistical
probability conditional on the total (relevant) evidence about the respective
individual a; in our example: P(Ra) = p(Rz|Fx).?> Therefore, a justification

3The transfer of p(Rz|Fz) to P(Fa) is also called “direct inference” and is related to
the so-called statistical principal principle; thereby “P” must be prior in regard to the
involved individual a (see Schurz 2014, 160 and 2024, 58f.).
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of the RTE would give us at the same time a justification of transferring
statistical probabilities to single cases by means of the RTE.

In the next section, we offer such a justification of the RTE, based on a
reconstruction of a seminal proof of Good (1966). The proof demonstrates
that for practical as well as predictive success, the best what we can do is
to conditionalize on the total available evidence. The proof is an instance
of what is called an optimality justification. It is part of the account of
epistemology based on optimality-justifications developed in Schurz (2024)
that grew out from work on the optimality of meta-induction (Schurz 2019).

2 An optimality justification of the requirement of
total evidence

In what follows I explain the proof for the simplest case of binary partitions,
illustrated at hand of our weather example. So we are interested in predicting
the binary variable =R, where “+” stands for “unnegated” or “negated”,
ie., £R € {R,—R}, in our example, that it will rain (R) or not rain
(=R) = tomorrow. Note that strictly speaking we have to represent the
prediction R by the atomic formula Ra,;, where aj,as,... stands for a
sequence of days, a1 for the day tomorrow and a,, for today. We dispense
with this formal complication since the meaning is obvious.

Preceding each day we obtain additional evidence about whether the
barometer reading has fallen or not, £F', where according to our estimation
P(R|F)=0.95 and P(R|-F) = 0.15.

Good’s proof of the optimality of the RTE is devised for success in actions,
whose utility depends on the unknown utility-determining circumstances or
predictive targets, in our example +R. We assume that in our example the
possible actions are:

the action(s) of taking an umbrella with us or not, abbreviated as +U.

The decision concerning +U must be made today, for example because
we leave today for a mountain tour tomorrow. Concerning the utilities,
u(A|C) denotes the utility of action A given the circumstance C.* In our
example, we assume the following utility values:

u(-UIR) =0, u(~U|-R) =0, w(U|R)=3, and u(U|-R)=—1.

4In causal decision theory (Weirich 2020) one often writes u(A A C) instead of u(A|C).
This indicates that also C may contribute to the total utility outcome. This notation is
appropriate if the circumstances includes factors that are effects of the actions, but we do
not assume this (see below). Our utilities express the utility-effect of the action relative to
the total utility of the action-independent circumstances; this is reflected in the notation
“u(A|C)”, which is close to Savage’s notation (Steele and Stefanson 2020, sec. 3.1). For
action-independent circumstances both notations are equivalent, because in this case the
decision matrix can be rescaled by adding to each row a row-specific constant without
changing the Eu-ordering of the actions (see Jeffrey 1983, 35-37).
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Utilities and probabilities are assumed to be reliably estimated.
According to decision theory the expected utility, Eu, of the actions £U
are given as:

Eu(U) = P(R) - w(U|R) + P(~R) - u(U|~R)
=def EiRP(:IZR) . u(U| + R)

Eu(-U) = P(R) - u(-U|R) + P(=R) - u(=U|~R)
=def EiRP(ﬂ:R) . u(—\U| + R)

(1)

In informal words: The Eu of action U is the sum of U’s utilities under the dif-
ferent circumstances { R, 7R} multiplied with their probabilities. (Similarly
for =U.)

So in our example, without additional evidence we get:
Eu(lU)=02-3-08-1=-02<Eu(-U)=02-04+0.8-0=0.

So with the above utilities, if all what I know is P(R) = 0.2, then my wisest
action is not to take an umbrella.

The philosophical assumption behind the decision-theoretic formula (1)
is that the choice of action is free in the sense of being probabilistically inde-
pendent from those utility-determining circumstances that are not causally
influenced by the actions. In the formula (1), the cells of the partition of
circumstances range over those circumstances, in our example £R. This
assumption justifies that we write P(+R) instead of P(+R| £+ U), since +U
has no causal influence on tomorrow’s rain. We will defend this assumption
below. Here we merely point out that we may include action-dependent
circumstances by expanding in equation (1) the term w(U| £ R) as follows:

w(U| + R) = %, P(D;|U) - w(U A Dy| + R),

where {Dy,...,D,} is an additional partition of action-dependent facts.
Inserting this equation into (1) gives us

Eu(U) = Sz P(+£R) - %, P(D;|U) - w(U A D;| £ R),

which is a version of Skyrms’ causal decision theory (Skyrms 1980, sec. IIC;
Weirich 2020, sec. 2.3).
The argument of Good’s proof in my reconstruction consists of two steps:

Step 1 of Good’s proof: The expected utility Eu of a fixed action—one
that is independent of which additional evidence you observe—is provably
preserved under conditionalization of the probabilities of the circumstances
on new evidence +F. In other words: the Eu does not change under
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refinements of the partition of action-independent circumstances. In our
example this means the following:

Eu(-=U) = Eu(=U|{F,—~F}), (2)
where
Eu(-U|{F,~F}) = P(F)-Eu(-U|F) 4+ P(=F) - Eu(=U|-~F),
and

Eu(-U|F) =X4irP(£R|F) - u(U| £ R)
= the Eu of =U updated with P(£R|F),

and similarly,
Eu(—=U|-F) = the Eu of =U updated with P(+R|-F).

Similarly for Eu(U).
The proof of (2) is as follows. Analytically it holds that

EwU|{F,~F}) = P(F) -S4 P(£R|F) - u(U| £ RAF) +
P(~F)-S4pP(+R|-F)-u(U| £ RA-F). (3)

We assume, however, that
u(xU|£RA+F) = u(£U|+R) (utility-neutral additional evidence). (4)

This holds because the circumstances +R determine the utilities of the
actions. So the fact expressed by the evidence, =F', has no further influence
on their utility.> From (3) and (4) we obtain:
(5) Proof of (2):
Eu(UNF,—F})
= P(F)-XgrP(£R|F) - uw(U|+ R) + P(—F)-XgP(£R|-F) - w(U| £ R)
= XRr[P(£RAF) - u(U| £ R) + P(XRA—-F) -u(U| £ R)]
= XRr[P(£RAF) + P(RA-F)] - u(U| &+ R)
=YgrP(£R) -u(U| £ R) = Eu(U). Q.E.D.

Step 2 of Good’s proof: Now, the point of conditionalization is that the
new evidence may change the optimal action under a particular observational

5Tt is also possible to prove (2) without assumption (4), by assuming Jeffrey’s framework
that identifies utilities and expected utilities; his “desirability axiom” (1983, 80, (5-2))
implies for our example that (2) holds. However, Jeffrey’s axiom is rather strong.
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outcome £F. If F' is observed, this indicates a high chance of rain, and so
the F-conditional Eu of U is much higher than that of =U. In our example
we get

Eu(U|F) =0.95-3—0.05-1 =28 > Eu(-U|F) =0.95-0+ 0.15- 0 = 0.

If —F is observed, we should not change the best evidence-independent
action —U; in this case, the surplus of —=U over U even increases. In our
example we get

Eu(U|-F) = 0.15-3—0.85-1 = —0,4 < Eu(=U|~F) = 0.15-0+0.15-0 = 0.

In conclusion, after conditionalization the rational subject performs the
conditionalized or evidence-dependent action

U* =4t “U if F and —U if =F”.
For U* the Eu is computed as follows:
Ew(U*|{F,—~F}) = P(F) -Eu(U|F) + P(—F) - Eu(=U|-F). (6)

Eu(U*|{F,—~F}) is greater than the Eu of the best fixed action, Eu(-U]|
{F,—F}), since Ew(U|F) > Eu(-U|F). To see this, compare equation (6)
with the equation below the equation (2): the two equations differ only in the
terms Eu(U|F) respectively Eu(-U|F), and since Eu(U|F) > Eu(-U|F),
Ew(U*|{F,~F}) > Eu(-U|{F,—-F}) follows, where Eu(=U|{F,~F}) =
Eu(=U) (as proved in (5)) and —U is the best fixed action.

The basic argument is entirely independent of the assumed utilities. Even
if the utility of taking an umbrella given rain would be much smaller than
given not-rain (for example because of a dictator who punishes people who
are taking an umbrella while it rains), the theorem would go through. Either
under one of the two evidential outcomes +F' the evidence-dependent Eu
of one of the two actions, say A’, becomes greater than the best evidence-
independent action, call it A;,q, then we switch from Aj,q to A’ under this
outcome and this will increase the Eu, or under both evidential outcomes
Ajng has still maximal Eu, in which case we stay with A;nq and (by the proof
in (5)) the Eu will be preserved.

This proof generalizes to arbitrary finite partitions of possible actions,
circumstances and evidence, leading to the following result:

Theorem (Optimality of the RTE). Assume a partition C of possible cir-
cumstances and a partition of possible actions A whose Eu is governed by
the decision-theoretic formula (1). Then:

(i) Conditionalization of the probabilities of the circumstances C € C of
the agent’s possible actions A € A on the cells of a partition F of
additional evidence can only increase but not decrease the Eu of the
agent’s evidence-dependent action A* defined as follows:
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(U*) “For all cells F € F, if F is observed, then choose action Ag”,
where A is the action with the highest F-conditional Eu.

(ii) Moreover: Let Ajnq be the fixed (evidence-independent) action with
highest Eu. Then: If for all F' € F, Ap = Ajnq, then A* has the same
Eu as Ajng, but if for at least one F' € F, Ap # Ajnq, then the Eu of A*

increases.

The general mathematical fact behind this theorem is expressed by
Schwartz (2021) as follows: The maximum of a weighted average (which is
Eu(=U|{F,—F}) is always smaller than or at most equal to the corresponding
average of the maxima (which is Eu(U*|{F, —F'}) (see also Bradley and Steel
2016, 4).

Three features of this general result are remarkable:

First: The argument holds for every utility function. This result is
astonishing, in particular in the domain of predictions (see below).

Second: The only essential assumption of the optimality result is that the
costs of acquiring new information are negligible.® If these costs are too high,
they could of course offset the benefits gained. Some counterexamples to
the RTE are of this sort—for example, the first counterexample in Schwarz
(2021).

Third: The result implies two things: (i) That you should take into
account all the (relevant) evidence that you actually possess, but also (ii)
that you should try to gather new evidence whenever this is easily possible,
because by doing so you cannot decrease and will in most cases increase the
Eu of your actions.

Horwich (1982, 125-128) objected against Good’s proof that it would
apply only to practical (non-epistemic) actions. But this is not true: the
possible actions in Good’s proof may also be purely epistemic actions, for
example, predictions whose utility is given by a predictive scoring measure.
In our example, the actions would be predictions of tomorrow’s weather,
abbreviated as “pred(£R)” for predicting R or —R. The optimal fixed
prediction in our weather example would be pred(—R). But conditional
on observing F' the optimal prediction is not =R but R. So the rational
forecaster predicts R if F' was observed and —R if —=F was observed, and
this increases the predictive score. Let us designate this evidence-dependent
prediction as pred”. Good’s proof applies in precisely the same way and our
theorem applies: the Eu of pred” can only increase but not decrease the Eu
of the best evidence-independent prediction, and this results holds for every
scoring function (for details cf. Schurz 2024, sec. 7.3).

SNote that the utility of the acquirement of evidence is a different matter than the
utility of the fact expressed by the evidence.
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We have illustrated Good’s argument for qualitative predictions (pre-
dictions of events), but a related argument applies to the predictions of
probabilities (cf. Thorn 2017). In this case the possible predictions are
P-distributions P : {ej,...,e,} — [0,1], where {e1,...,e,} are the possible
events (in our example £R). The prediction is scored against the truth-value
“1” of the true event, ey, among the partition of predicted events, i.e.,
score(pred) = 1 — loss(P(etrue); 1), where “loss” is a loss function (cf. Cesa-
Bianchi and Lugosi 2006, ch. 9). For probabilistic predictions the scoring
function is usually assumed to be proper (e.g., quadratic), because only
for proper scoring functions is it optimal for the forecaster to predict her
(rationally estimated) probabilities of the events (cf. Brier 1950; Maher 1990,
113). In contrast, for linear scoring (loss(pred, 1) = 1 — pred), it is optimal
to predict the roundings of the event’s probabilities to 0 or 1 (the so-called
“maximum rule”; cf. Schurz 2019, 103). However, Good’s optimality argument
for the RTE generalizes also to non-proper scorings, provided the predictions
pred € [0,1] are allowed to deviate from one’s actual probabilities that are
used to compute the Eu.”

Let me finally note that the optimality of the RTE has an important
consequence for the externalism-internalism debate, in the justificational
sense of externalism/internalism (cf. Schurz 2024, sec. 3.2). In epistemological
externalism, the question of choosing the right reference class in which the
reliability of a belief-generating method should be determined is part of
what is called the generality problem (Conee and Feldman 1998, Matheson
2015). Within externalism this question is largely undecided or at least
hard to answer. But within justification-internalism, the question has a
straightforward and unique solution: the reliability should be evaluated with
regard to the agent’s total relevant evidence for the belief in question.

At the end of this section let me return to the presupposition of our
decision-theoretic formula (1): that the choice of action is free in the sense
of being probabilistically independent from those utility-determining circum-
stances C; that are not causally influenced by the actions. First, note that if
we conditionalize our decision on the available evidence E, this independence
condition has to be formulated conditionally: C; and the chosen action
A should be independent conditional on E, i.e., P(C;|E) = P(C;|E A A).
Second, the independence condition excludes various versions of Newcomb’s

"It may happen that conditionalizing on one cell of +E, say on E, brings the old actual
probabilities close to 0.5 (e.g., of P(R) = 0.2 and P(R|E) = 0.3). In this case Good’s
strategy with linear scoring would require to predict the old non-actual probabilities
conditional on E (and the new conditionalized probabilities conditional on —F), which is
not allowed if one must allows predict one’s actual probabilities. Horwich (1982, 128f.)
proved that the RTE maximizes the Eu of one’s actual probabilities even under linear
scoring, which is a second important result. But his proof is specially designed for linear
scorings and does not generalize to arbitrary scorings.
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paradox, in which some past event X (in Newcomb’s paradox the prediction
of a perfect or nearly perfect forecaster) determines which action you will
choose, or the probability with which you will choose it, already in advance,
so that there is a probabilistic dependence between the circumstances C;
(that incorporate £X) and your choice of action. Newcomb’s paradox in its
various versions forms a second line of purported counterexamples against
Good’s proof of the universal rationality of the RTE (the 2nd, 3rd and 4th
counterexample in Schwarz 2021 falls under this category). I am inclined
to think, however, that the assumption of Newcomb’s paradox is in conflict
with the fact that decision theory delivers a normative recommendation. It is
not possible for me here to go into the extensive literature on the Newcomb
paradox® and I content myself here with a brief statement of my main
argument. Decision theory gives the normative recommendation that you
should always choose the action with highest expected utility, conditional
on the total evidence E. But in in typical Newcomb-type situations, the
normatively recommended action is different from that action that is deter-
mined or predicted by the past event X. This implies that in many cases it
will be impossible for you to follow the decision-theoretic recommendation.
But this means that the decision-theoretic recommendation will itself be
itself unreasonable, because according to the famous Ought-Can principle
(Ought implies Can), a normative recommendation can only be reasonable if
the recommended action can be done. But in Newcomb-type situations you
know that with considerable probability the recommended action cannot
be done, because a past event forces the agent to choose an action different
from the recommended one. On the other hand, if the recommended action
luckily agrees with the action the agent is forced to do, then the normative
recommendation becomes superfluous.

In conclusion, if actions are determined by past circumstances, then
normative recommendation either violate the Ought-Can principle or become
superfluous. Therefore the freedom assumption seems to be an implicit
presupposition of decision-theoretic recommendations.

3 The political relevance of the requirement of total
evidence

In the concluding section we discuss an apparent conflict of the RTE with
political requirements of anti-discrimination. Consider the example of sex
discrimination in job hiring (Birkelund et al. 2022):

1. According to the RTE, information about the sex (or biological gen-
der) of the applicant should be included in the qualification-relevant
evidence iff it is statistically relevant.

8Cf., e.g., Nozick (1969), Eells (1981), Lewis (1981), Skyrms (1982), Horwich (1985),
Weirich (2020).
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2. In contrast, politicians of anti-discrimination often require sex to be
ignored despite of its statistical relevance, because it would lead to
discrimination.

Of course, if the belief about a correlation between sex and job qualifica-
tion is not statistically supported, but is based on prejudice or some other
sort of cognitive bias, then the RTE does not demand sex to be included.
Then we should leave out the male/female information simply because the
job assigner’s beliefs about properties correlated with biological sex is biased,
i.e., wrong. There is a rich literature about cognitive prejudice and bias,
but here we will not enter these topics. Rather, we make the idealizing
assumption that our statistical beliefs are well supported by the statistical
evidence. In other words, the assessment procedure of the job assigner is
not biased but well calibrated. Then it seems that we have a conflict: For
the job assigner, conditionalizing on the additional information about sex
increases the expected qualification of the chosen candidate(s). But at least
for some candidates this seems to be unfair, given that fairness means that
the job assignment corresponds to the candidates’ objective job-relevant
qualifications. This understanding of fairness is also called the meritocratic
understanding (cf. Barocas et al. 2023, ch. 4).

Let us give an example: A woodworking factory has to hire a person for
a wood chipper job that requires a lot of physical strength. According to
statistical evidence, males are physically stronger on average than females.
So if sex is a criterion for job hiring, then a female applicant will have less
chances even if she is physically very strong. If statistics is correct, these
cases of unfairness will be in the minority, but they will unavoidably occur,
and with significant frequency. Similar examples may be given with sexes
switched. For example, assume a nursery school hires a person for early
childhood care. According to statistical evidence, females caregivers are
better accepted by young children than males. So if sex is used as a criterion,
a male person will have less chances to be hired even if children would like
him most (cf. Birkelund et al 2022, 347).

The only solution which I see is the following: One should base the
decision about the job assignment solely on information about the directly
relevant properties of the applicants. With this I mean those properties
that are most direct causes of the job performance of the candidate (if the
candidate would be hired), within the set of evidentially accessible variables.
If we do this, then the merely indirectly relevant properties such as sex, race
or age are screened off, which means that after conditionalization on the
directly relevant properties, they become irrelevant. In our example: The
wood factory should directly test the candidates for their physical strength
and other directly relevant properties, such as social skills, reliability, etc.
Given this information, additional information about sex or other merely
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indirectly relevant properties of the applicants becomes irrelevant. This is
an implication of the so-called causal Markov condition, according to which
conditionalization on the direct causes screens off indirect causes from their
effects, and likewise, conditionalization on the common causes screens off
their effects from each other.” This means in terms of probabilities:

P(qualification | physical strength & sex) =
P(qualification | physical strength). (7)

Let us generalize this idea. Assume the following variables (or partitions
of their possible values) designated by bold-face letters:

1. Q is a partition of degrees of qualification of candidate (e.g., from
1 (best) to 5 (worst), understood as expressions of their future job
performance which is to be predicted.

2. D is a partition of evidentially accessible properties of the candidates
that are (supposedly) directly causally relevant for Q and measured
by a score S on which the decision is based.

3. A is a partition of additional information, for example about sex, race
or age (etc.), that is merely indirectly relevant, by being correlated
with S. In the literature on fairness in machine learning, A is often
called the (partition of) sensitive attributes (Barocas et al. 2023, ch. 3;
Mitchell et al. 2021, 149).

Then I propose the following

Fairness criterion: If score is fair, then Indep(Q, A[S) should
hold (where “Indep(X,Y|Z)” means that if we fix the variable
Z to a particular value, then the values of X and Y, respectively,
are mutually probabilistically independent).

(F)

In the literature on fairness in machine learning, (F) corresponds to
an important anti-discrimination criterion that has been called sufficiency
(Barocas et al. 2023, ch. 3) or predictive parity (Mitchell et al. 2021, 154).

The causal model behind the above fairness criterion is illustrated in
Figure 1 below. Causal arrows are distinguished into required ones (marked
with “r”), admissible but not required ones (marked with an “a”), and
excluded ones (marked with a backslash “\”). Thus, the sensitive attribute
A may (but need not) be relevant for Q, the job qualification, but if A is
relevant for Q, then merely indirectly, via the path over the directly relevant

9Cf. Lauritzen et al. (1990), 50; Spirtes et al. (2000), sec. 3.4.1-2; Pearl (2009), 16-19;
Schurz and Gebharter (2016), sec. 2.3, conditions (6) and (8).
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properties D, whence A is screened off by conditionalization on D. This
requires that the variable D must be complete, in the sense of covering all
or almost all properties of the job candidate that are direct causes for Q.
Moreover, the score S must be accurate in the sense of measuring the values
of D precisely; if this is the case, then not only D but also S screens off A
from Q—which is the required condition because S determines the decision
who will get the job. What is excluded is that information about A directly
influences the score S or the decision (independent from D), or that A has
a direct influence on Q (relative to the model), which would mean that the
scoring variable S leaves out important causal information and, thus, fails
to screen off indirect causes of Q.

D > S > Decision (job assignment)

FIGURE 1. The causal model behind the fairness criterion of sufficiency (or
predictive parity). Causal arrows are distinguished onto required ones (“r”),
allowed ones (“a”) and excluded ones (“\”).

Summarizing, it seems that by conditionalizing on the directly relevant
properties, unfairness can be avoided. Moreover, if we are not sure which
of the evidentially accessible variables are the directly relevant ones, then
conditionalization on more information can reveal possibly discriminating
variables that are merely indirectly relevant—by detecting screening-off
relations. So it seems that the RTE ‘wins’: it is not really in conflict with
anti-discrimination. Is this true?

I conclude this paper with a brief discussion of three objections to the
above fairness criterion.

Objection 1: In the literature on fairness in machine learning, there is a
hot controversy about the “right” criterion of fairness (Barocas et al. 2023,
ch. 3 & 4). In my view the above criterion is the right one, given the causal
model of Figure 1. Let me mention two rival criteria of fairness:

The first rival fairness criterion is called independence or statistical parity
and requires Indep(S, A) (Barocas et al. 2023, ch. 3). This means that
on average all A-members—in our example both sexes—should achieve
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the same qualification score. Obviously, this can only be compatible with
meritocratic fairness if on average all A-members—in our example both
sexes—are equally qualified. Otherwise this criterion leads to some sort of
“affirmative action” that is discussed below.

A second rival is called the criterion of separation (ibid., ch. 3) which
requires Indep(S, A|Q). In this criterion, the roles of the variables S and Q
are switched, compared to our preferred criterion (F). Thus in the causal
model on which the separation criterion is based, S is assumed not to express
causes but the effects of Q. This implies a rather different understanding
of Q and S. It makes sense if Q takes the role of D, i.e., is identified with
actually measurable properties of the candidates that are supposedly relevant
for its job qualification, while S is a possibly inaccurate score of Q.

Objection 2: Some people, politically mainly left-wing oriented, argue for
so-called affirmative action. This is based on the idea that members of an
underrepresented or even discriminated group should be preferred even if they
are on average less qualified, because this kind of “compensatory unfairness”
is necessary for breaking up historically or socially anchored injustice. An
example would be the university policy to hire 50% males and 50% females
for a professor job in theoretical philosophy, which is a discipline where we
typically have 75% males and 25% females among students, researchers and
applicants for the professor job. Affirmative action is controversial—how
much unfairness (in the meritocratic sense) is tolerable in this attempt to
encourage women’s engagement with theoretical philosophy? I do not want
to discuss this question here. Rather, I want to emphasize that even if one
supports affirmative action, the general optimality proof of the RTE stays
intact, since RTE’s optimality holds for all utility functions. All what changes
for a selection criterion based on affirmative action is the relevant utility
function of the available actions and the partition of utility-determining
circumstances. In our example, the utility of the of hired applicant is then
not only based on the candidates merits, but also on other desired properties
such as the sex of the candidate. So “sex” is no longer merely “indirectly
relevant”, but becomes a directly relevant property.

Objection 3: In my view this is the hardest objection. It objects that
our claims hold only under the idealizing assumption that we possess suffi-
cient information about the directly relevant qualification properties of the
candidates. If the job recruiter is uncertain about these properties of the
candidates, then the RTE recommends conditionalization of the estimated
qualification on evidence about merely indirectly relevant evidence properties.
This will increases the expected qualification of the hired candidate, since
now his or her qualification is no longer screened off from these indirectly
relevant properties. However, the so achieved increase of the average qualifi-
cation has the cost that it will produces a certain amount of unfairness. This
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unfairness can be measured in terms of the numbers of pairs of candidates
A, B in which A is preferred over B although A is less competent than B.

In conclusion, in such a situation there is a trade-off between maximizing
the expected qualification of the chosen candidate and maximizing merito-
cratic fairness. What policy would be reasonably fair in such a situation? I
cannot go into the details of this question but confine myself with a remark
concerning a frequently heard suggestion, namely that without knowledge
about the directly job-relevant properties, one should choose the candidate
randomly. Remarkably, many people find such a random choice as fair. How-
ever, if we use our measure of unfairness—the numbers of pairs of candidates
A, B in which A is preferred over B although A is less competent than
B—then a random choice will in most cases both decrease the expected
qualification of the chosen candidate and increase the amount of unfairness.
So the random-choice strategy is not a truly satisfying solution. I conclude
that a true dissolution of the conflict is not possible by the suppression of
information, but only by its magnification, by trying to achieve as much
information as possible about those properties that are directly relevant for
the decision one has to make.
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